Esempio n. 1
0
rd.seed(0)
np.random.seed(0)

# Read weather and adapt it to septoria (add wetness)
meteo_path = shared_data(alinea.septo3d, 'meteo05-06.txt')
weather = Weather(data_file=meteo_path)
weather.check(varnames=['wetness'], models={'wetness': wetness_rapilly})
seq = pandas.date_range(start="2005-10-01 01:00:00",
                        end="2006-07-01 01:00:00",
                        freq='H')

# Initialize a wheat canopy
g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                 length=1,
                                                 width=1,
                                                 sowing_density=250,
                                                 plant_density=250,
                                                 inter_row=0.12,
                                                 seed=3)

# Choose source leaf in canopy
# (Here the value of the leaf is known but it changes with another initialize_stand)
source_leaf = g.node(21943)

# Initialize the models for septoria
septoria = plugin_septoria()
inoculator = RandomInoculation()
growth_controler = NoPriorityGrowthControl()
infection_controler = BiotrophDUPositionModel()
sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
emitter = SeptoriaRainEmission(domain_area=domain_area)
Esempio n. 2
0
def run_simulation():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    meteo_path = shared_data(alinea.septo3d, 'meteo98-99.txt')
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness': wetness_rapilly})
    seq = pandas.date_range(start="1998-10-01 01:00:00",
                            end="1999-07-01 01:00:00",
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12,
                                                     seed=8)

    # Initialize the models for septoria
    # septoria = new_septoria(senescence_treshold=senescence_treshold)
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
    # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    # inspectors[2] = LeafInspector(g, blade_id=88)
    # inspectors[3] = LeafInspector(g, blade_id=80)
    dates = []
    # Simulation #########################################################
    for i, controls in enumerate(
            zip(weather_timing, wheat_timing, septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls

        # Update date
        date = weather_eval.value.index[0]
        dates.append(date)

        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(
                g,
                label='LeafElement',
                temp=weather_eval.value.temperature_air[0],
                wetness=weather_eval.value.wetness[0],
                relative_humidity=weather_eval.value.relative_humidity[0],
                wind_speed=weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,
                           label='LeafElement',
                           rain_intensity=rain_eval.value.rain.mean(),
                           rain_duration=len(rain_eval.value.rain)
                           if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g, _ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            areas = g.property('area')
            senesced_areas = g.property('senesced_area')
            leaves = get_leaves(g, label='LeafElement')
            vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
            positions.update({
                vid: (0 if (positions[vid] == 1 and not are_green[vid]) or
                      (positions[vid] > 0 and round(areas[vid], 5) == round(
                          senesced_areas[vid], 5)) else positions[vid])
                for vid in vids
            })

        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label='LeafElement')
            update_healthy_area(g, label='LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                dispersal_units = generate_stock_du(nb_dus=rd.randint(0, 5),
                                                    disease=septoria)
                initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g,
                   septo_eval.dt,
                   growth_controler,
                   sen_model,
                   label='LeafElement')
        if rain_eval:
            if rain_eval.value.rain.mean() > 0:
                g, nb = disperse(g,
                                 emitter,
                                 transporter,
                                 "septoria",
                                 label='LeafElement')
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                wash(g,
                     washor,
                     rain_eval.value.rain.mean(),
                     label='LeafElement')
                # Save outputs after washing
                infection_controler.control_position(g)
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
            else:
                for inspector in inspectors.itervalues():
                    inspector.nb_dus += [0, 0]
                    inspector.nb_dus_on_green += [0, 0]
                    inspector.nb_dus_on_healthy += [0, 0]
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
        else:
            for inspector in inspectors.itervalues():
                inspector.nb_dus += [0, 0]
                inspector.nb_dus_on_green += [0, 0]
                inspector.nb_dus_on_healthy += [0, 0]
                inspector.update_green_area(g)
                inspector.update_healthy_area(g)

        for inspector in inspectors.itervalues():
            inspector.compute_nb_infections(g)

        if wheat_eval:
            update_plot(g)
            # scene = plot3d(g)
            # index = i/24
            # if index < 10 :
            # image_name='./images_septo2/image0000%d.png' % index
            # elif index < 100 :
            # image_name='./images_septo2/image000%d.png' % index
            # elif index < 1000 :
            # image_name='./images_septo2/image00%d.png' % index
            # elif index < 10000 :
            # image_name='./images_septo2/image0%d.png' % index
            # else :
            # image_name='./images_septo/image%d.png' % index
            # save_image(scene, image_name=image_name)

    # Tout stocker dans un dataframe avec les dates en index
    outs = {
        'nb_dus': inspectors[1].nb_dus[::2],
        'nb_unwashed_dus': inspectors[1].nb_dus[1::2],
        'nb_dus_on_healthy': inspectors[1].nb_dus_on_healthy[1::2],
        'nb_infections': inspectors[1].nb_infections,
        'green_area': inspectors[1].leaf_green_area,
        'healthy_area': inspectors[1].leaf_healthy_area
    }
    outputs = pandas.DataFrame(data=outs, index=dates)
    return outputs
Esempio n. 3
0
def run_simulation(start_year, variability=True, **kwds):
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    weather_file = 'meteo'+ str(start_year)[-2:] + '-' + str(start_year+1)[-2:] + '.txt'
    meteo_path = shared_data(alinea.septo3d, weather_file)
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness':wetness_rapilly})
    seq = pandas.date_range(start = str(start_year)+"-10-01 01:00:00",
                            end = str(start_year+1)+"-07-01 01:00:00", 
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0., length=0.1, 
                                                    width=0.2, sowing_density=150,
                                                    plant_density=150, inter_row=0.12, 
                                                    seed=3)
    
    # Initialize the models for septoria
    if 'alinea.alep.septoria_age_physio' in sys.modules:
        del(sys.modules['alinea.alep.septoria_age_physio'])
    if variability==True:
        septoria = variable_septoria(**kwds)
    else:
        septoria = plugin_septoria(model="septoria_age_physio")
    DU = septoria.dispersal_unit()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    first_blade = 80
    ind = 4.
    for blade in range(first_blade,104,8):
        ind -= 1
        inspectors[ind] = LeafInspector(g, blade_id=blade)
    
    # Simulation loop
    for i,controls in enumerate(zip(weather_timing, wheat_timing, 
                                    septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls
        
        # Update date
        date = weather_eval.value.index[0]

        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(g,label = 'LeafElement',
                           temp = weather_eval.value.temperature_air[0],
                           wetness = weather_eval.value.wetness[0],
                           relative_humidity = weather_eval.value.relative_humidity[0],
                           wind_speed = weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,label = 'LeafElement',
                           rain_intensity = rain_eval.value.rain.mean(),
                           rain_duration = len(rain_eval.value.rain) if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g,_ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            leaves = get_leaves(g, label = 'LeafElement')
            positions.update({leaf:(0 if positions[leaf]==1 and not are_green[leaf] else positions[leaf]) 
                              for leaf in leaves})
            
        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label = 'LeafElement')
            update_healthy_area(g, label = 'LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                if rd.random()<0.4:
                    dispersal_units = [DU(nb_spores=rd.randint(1,100), status='emitted') for i in range(rd.randint(0,3))]
                    initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g, septo_eval.dt, growth_controler, sen_model, label='LeafElement')                
        
        les = g.property('lesions')
        lesions = sum([l for l in les.values()], [])
        
        print([l.fungus.degree_days_to_chlorosis for l in lesions])
        
        # if len(lesions)>10:
            # import pdb
            # pdb.set_trace()
        
        
        if rain_eval:
            g, nb = disperse(g, emitter, transporter, "septoria", label='LeafElement')
            wash(g, washor, rain_eval.value.rain.mean(), label='LeafElement')
        
        # Save outputs
        for inspector in inspectors.itervalues():
            inspector.update_variables(g)
            inspector.update_du_variables(g)
        
        if wheat_eval:
            plot_severity_by_leaf(g)
    
    return inspectors
Esempio n. 4
0
def run_simulation_septoria():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Choose dates of simulation and initialize the value of date
    start_date = datetime(2000, 10, 1, 1, 00, 00)
    end_date = datetime(2001, 07, 01, 00, 00)
    date = None

    # Read weather and adapt it to septoria (add wetness)
    weather = get_septoria_weather(data_file='meteo01.csv')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12)

    # Initialize the models for septoria
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission()
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    nb_steps = len(pandas.date_range(start_date, end_date, freq='H'))
    weather_timing = TimeControl(delay=1, steps=nb_steps)
    wheat_timing = TimeControl(delay=24,
                               steps=nb_steps,
                               model=wheat,
                               weather=weather,
                               start_date=start_date)
    septo_timing = TimeControl(delay=1, steps=nb_steps)
    timer = TimeControler(weather=weather_timing,
                          wheat=wheat_timing,
                          disease=septo_timing)

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
    # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    inspectors[2] = LeafInspector(g, blade_id=88)
    inspectors[3] = LeafInspector(g, blade_id=80)
    inspectors[4] = LeafInspector(g, blade_id=72)
    dates = []
    # Simulation #########################################################
    for t in timer:
        # print(timer.numiter)
        # Update date
        date = (weather.next_date(t['weather'].dt, date)
                if date != None else start_date)
        dates.append(date)
        print(date)

        # Get weather for date and add it as properties on leaves
        _, data = weather.get_weather(t['weather'].dt, date)
        set_properties(g,
                       label='LeafElement',
                       wetness=data.wetness.values[0],
                       temp=data.temperature_air.values[0],
                       rain_intensity=data.rain.values[0],
                       rain_duration=data.rain_duration.values[0],
                       relative_humidity=data.relative_humidity.values[0],
                       wind_speed=data.wind_speed.values[0])

        # Grow wheat canopy
        grow_canopy(g, wheat, t['wheat'])
        update_healthy_area(g, label='LeafElement')
        # Note : The position of senescence goes back to its initial value after
        # a while for undetermined reason
        # --> temporary hack for keeping senescence position low when it is over
        positions = g.property('position_senescence')
        are_green = g.property('is_green')
        leaves = get_leaves(g, label='LeafElement')
        vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
        positions.update({
            vid: (0 if positions[vid] == 1 and not are_green[vid] else
                  positions[vid])
            for vid in vids
        })

        # Develop disease
        if data.dispersal_event.values[
                0] == True and timer.numiter >= 1000 and timer.numiter <= 2000:
            # Refill pool of initial inoculum to simulate differed availability
            dispersal_units = generate_stock_du(nb_dus=10, disease=septoria)
            initiate(g, dispersal_units, inoculator)

        infect(g, t['disease'].dt, infection_controler, label='LeafElement')
        update(g,
               t['disease'].dt,
               growth_controler,
               sen_model,
               label='LeafElement')
        for inspector in inspectors.itervalues():
            inspector.compute_severity(g)
            inspector.update_disease_area(g)
            inspector.update_green_area(g)
            inspector.update_area(g)
        if data.dispersal_event.values[0] == True:
            disperse(g, emitter, transporter, "septoria", label='LeafElement')
            wash(g, washor, data.rain.values[0], label='LeafElement')

        # if timer.numiter%24 == 0:
        # update_plot(g)

    # Tout stocker dans un dataframe avec les dates en index
    outputs = {}
    for id, inspector in inspectors.iteritems():
        outs = {
            'severity': inspectors[id].severity,
            'disease_area': inspectors[id].leaf_disease_area,
            'green_area': inspectors[id].leaf_green_area,
            'total_area': inspectors[id].leaf_area
        }
        outputs[id] = pandas.DataFrame(data=outs, index=dates)
    return outputs
Esempio n. 5
0
            surface_nec += l.surface_nec
            surface_spo += l.surface_spo

    inspector.surface_inc.append(surface_inc)
    inspector.surface_chlo.append(surface_chlo)
    inspector.surface_nec.append(surface_nec)
    inspector.surface_spo.append(surface_spo)
    inspector.ratio_inc.append(100. * surface_inc / total_area if total_area>0. else 0.)
    inspector.ratio_chlo.append(100. * surface_chlo / total_area if total_area>0. else 0.)
    inspector.ratio_nec.append(100. * surface_nec / total_area if total_area>0. else 0.)
    inspector.ratio_spo.append(100. * surface_spo / total_area if total_area>0. else 0.)

# Test ###############################################################
# Initialize a wheat canopy
g, wheat, domain_area = initialize_stand(age=1000., length=0.1, 
                                        width=0.2, sowing_density=150,
                                        plant_density=150, inter_row=0.12)

# Generate a pool of lesions with given surface to be distributed on target leaves
nb_lesions = 50; surface_inc = 0.1; surface_chlo = 0.2; surface_nec = 0.3; surface_spo = 0.4
lesions = generate_lesions_with_surfaces(nb_lesions, surface_inc, surface_chlo, surface_nec, surface_spo)

# Select target blades (top 3)
blade_1 = find_blade_id(g, leaf_rank = 1)
blade_2 = find_blade_id(g, leaf_rank = 2)
blade_3 = find_blade_id(g, leaf_rank = 3)

# Distribute the lesions
target_leaves = find_leaf_ids(g, blade_1) + find_leaf_ids(g, blade_2) + find_leaf_ids(g, blade_3)
distribute_lesions(g, target_leaves, lesions)
Esempio n. 6
0
def run_simulation_septoria():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Choose dates of simulation and initialize the value of date
    start_date = datetime(2000, 10, 1, 1, 00, 00)
    end_date = datetime(2001, 07, 01, 00, 00)
    date = None

    # Read weather and adapt it to septoria (add wetness)
    weather = get_septoria_weather(data_file='meteo01.csv')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0., length=0.1, 
                                                     width=0.2, sowing_density=150,
                                                     plant_density=150, inter_row=0.12)

    # Initialize the models for septoria
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission()
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    nb_steps = len(pandas.date_range(start_date, end_date, freq='H'))
    weather_timing = TimeControl(delay=1, steps=nb_steps)
    wheat_timing = TimeControl(delay=24, steps=nb_steps, model=wheat, weather=weather, start_date=start_date)
    septo_timing = TimeControl(delay=1, steps=nb_steps)
    timer = TimeControler(weather=weather_timing, wheat=wheat_timing, disease = septo_timing)

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
        # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    inspectors[2] = LeafInspector(g, blade_id=88)
    inspectors[3] = LeafInspector(g, blade_id=80)
    inspectors[4] = LeafInspector(g, blade_id=72)
    dates = []
    # Simulation #########################################################
    for t in timer:
        # print(timer.numiter)
        # Update date
        date = (weather.next_date(t['weather'].dt, date) if date!=None else start_date)
        dates.append(date)
        print(date)
        
        # Get weather for date and add it as properties on leaves
        _, data = weather.get_weather(t['weather'].dt, date)
        set_properties(g,label = 'LeafElement',
                        wetness = data.wetness.values[0],
                        temp = data.temperature_air.values[0],
                        rain_intensity = data.rain.values[0],
                        rain_duration = data.rain_duration.values[0],
                        relative_humidity = data.relative_humidity.values[0],
                        wind_speed = data.wind_speed.values[0])

        # Grow wheat canopy
        grow_canopy(g,wheat,t['wheat'])
        update_healthy_area(g, label = 'LeafElement')
        # Note : The position of senescence goes back to its initial value after
        # a while for undetermined reason
        # --> temporary hack for keeping senescence position low when it is over
        positions = g.property('position_senescence')
        are_green = g.property('is_green')
        leaves = get_leaves(g, label = 'LeafElement')
        vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
        positions.update({vid:(0 if positions[vid]==1 and not are_green[vid] else positions[vid]) 
                          for vid in vids})
        
        # Develop disease
        if data.dispersal_event.values[0]==True and timer.numiter >= 1000 and timer.numiter <= 2000:
            # Refill pool of initial inoculum to simulate differed availability
            dispersal_units = generate_stock_du(nb_dus=10, disease=septoria)
            initiate(g, dispersal_units, inoculator)
          
        infect(g, t['disease'].dt, infection_controler, label='LeafElement')
        update(g, t['disease'].dt, growth_controler, sen_model, label='LeafElement')
        for inspector in inspectors.itervalues():
            inspector.compute_severity(g)
            inspector.update_disease_area(g)
            inspector.update_green_area(g)
            inspector.update_area(g)
        if data.dispersal_event.values[0]==True:
            disperse(g, emitter, transporter, "septoria", label='LeafElement')
            wash(g, washor, data.rain.values[0], label='LeafElement')

        # if timer.numiter%24 == 0:
            # update_plot(g)
            
    # Tout stocker dans un dataframe avec les dates en index
    outputs = {}
    for id, inspector in inspectors.iteritems():
        outs = {'severity':inspectors[id].severity,
                'disease_area': inspectors[id].leaf_disease_area,
                'green_area': inspectors[id].leaf_green_area,
                'total_area':inspectors[id].leaf_area}
        outputs[id] = pandas.DataFrame(data=outs, index=dates)
    return outputs
Esempio n. 7
0
def run_simulation():
    # Initialization #####################################################
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    meteo_path = shared_data(alinea.septo3d, 'meteo98-99.txt')
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness':wetness_rapilly})
    seq = pandas.date_range(start = "1998-10-01 01:00:00",
                            end = "1999-07-01 01:00:00", 
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0., length=0.1, 
                                                    width=0.2, sowing_density=150,
                                                    plant_density=150, inter_row=0.12, 
                                                    seed=8)

    # Initialize the models for septoria
    # septoria = new_septoria(senescence_treshold=senescence_treshold)
    septoria = plugin_septoria()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))
    
    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    # for rank in range(1,3):
        # inspectors[rank] = LeafInspector(g, blade_id=find_blade_id(g, leaf_rank = rank, only_visible=False))
    inspectors[1] = LeafInspector(g, blade_id=96)
    # inspectors[2] = LeafInspector(g, blade_id=88)
    # inspectors[3] = LeafInspector(g, blade_id=80)
    dates = []
    # Simulation #########################################################
    for i,controls in enumerate(zip(weather_timing, wheat_timing, 
                                    septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls
        
        # Update date
        date = weather_eval.value.index[0]
        dates.append(date)
        
        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(g,label = 'LeafElement',
                           temp = weather_eval.value.temperature_air[0],
                           wetness = weather_eval.value.wetness[0],
                           relative_humidity = weather_eval.value.relative_humidity[0],
                           wind_speed = weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,label = 'LeafElement',
                           rain_intensity = rain_eval.value.rain.mean(),
                           rain_duration = len(rain_eval.value.rain) if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g,_ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            areas = g.property('area')
            senesced_areas = g.property('senesced_area')
            leaves = get_leaves(g, label = 'LeafElement')
            vids = [leaf for leaf in leaves if leaf in g.property('geometry')]
            positions.update({vid:(0 if (positions[vid]==1 and not are_green[vid]) or
                                        (positions[vid]>0 and round(areas[vid],5)==round(senesced_areas[vid],5))
                                        else positions[vid]) for vid in vids})
            
        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label = 'LeafElement')
            update_healthy_area(g, label = 'LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                dispersal_units = generate_stock_du(nb_dus=rd.randint(0,5), disease=septoria)
                initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g, septo_eval.dt, growth_controler, sen_model, label='LeafElement')
        if rain_eval:
            if rain_eval.value.rain.mean()>0:
                g, nb = disperse(g, emitter, transporter, "septoria", label='LeafElement')
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                wash(g, washor, rain_eval.value.rain.mean(), label='LeafElement')
                # Save outputs after washing
                infection_controler.control_position(g)
                for inspector in inspectors.itervalues():
                    inspector.update_du_variables(g)
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
            else:
                for inspector in inspectors.itervalues():
                    inspector.nb_dus += [0, 0]
                    inspector.nb_dus_on_green += [0, 0]
                    inspector.nb_dus_on_healthy += [0, 0]
                    inspector.update_green_area(g)
                    inspector.update_healthy_area(g)
        else:
            for inspector in inspectors.itervalues():
                inspector.nb_dus += [0, 0]
                inspector.nb_dus_on_green += [0, 0]
                inspector.nb_dus_on_healthy += [0, 0]
                inspector.update_green_area(g)
                inspector.update_healthy_area(g)
        
        for inspector in inspectors.itervalues():
            inspector.compute_nb_infections(g)
        
        if wheat_eval:
            update_plot(g)
            # scene = plot3d(g)
            # index = i/24
            # if index < 10 :
                # image_name='./images_septo2/image0000%d.png' % index
            # elif index < 100 :
                # image_name='./images_septo2/image000%d.png' % index
            # elif index < 1000 :
                # image_name='./images_septo2/image00%d.png' % index
            # elif index < 10000 :
                # image_name='./images_septo2/image0%d.png' % index
            # else :
                # image_name='./images_septo/image%d.png' % index
            # save_image(scene, image_name=image_name)
            
    # Tout stocker dans un dataframe avec les dates en index
    outs = {'nb_dus':inspectors[1].nb_dus[::2],
            'nb_unwashed_dus':inspectors[1].nb_dus[1::2],
            'nb_dus_on_healthy':inspectors[1].nb_dus_on_healthy[1::2],
            'nb_infections':inspectors[1].nb_infections,
            'green_area':inspectors[1].leaf_green_area,
            'healthy_area':inspectors[1].leaf_healthy_area}
    outputs = pandas.DataFrame(data=outs, index=dates)
    return outputs
Esempio n. 8
0
# Imports for display and saving
from alinea.alep.disease_outputs import plot_severity_by_leaf, save_image

# Initiation of the simulation ##########################################
# Set the seed of the simulation
rd.seed(0)
np.random.seed(0)

# Read weather and adapt it to septoria (add wetness)
meteo_path = shared_data(alinea.septo3d, 'meteo05-06.txt')
weather = Weather(data_file=meteo_path)
weather.check(varnames=['wetness'], models={'wetness':wetness_rapilly})
seq = pandas.date_range(start = "2005-10-01 01:00:00", end = "2006-07-01 01:00:00", freq='H')
                        
# Initialize a wheat canopy
g, wheat, domain_area, domain = initialize_stand(age=0., length=1, width=1,
    sowing_density=250, plant_density=250, inter_row=0.12,  seed=3)

# Choose source leaf in canopy 
# (Here the value of the leaf is known but it changes with another initialize_stand)
source_leaf = g.node(21943)

# Initialize the models for septoria
septoria = plugin_septoria()
inoculator = RandomInoculation()
growth_controler = NoPriorityGrowthControl()
infection_controler = BiotrophDUPositionModel()
sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
emitter = SeptoriaRainEmission(domain_area=domain_area)
transporter = SeptoriaRainDispersal()
washor = RapillyWashing()
Esempio n. 9
0
def run_simulation(start_year, variability=True, **kwds):
    # Set the seed of the simulation
    rd.seed(0)
    np.random.seed(0)

    # Read weather and adapt it to septoria (add wetness)
    weather_file = 'meteo' + str(start_year)[-2:] + '-' + str(start_year +
                                                              1)[-2:] + '.txt'
    meteo_path = shared_data(alinea.septo3d, weather_file)
    weather = Weather(data_file=meteo_path)
    weather.check(varnames=['wetness'], models={'wetness': wetness_rapilly})
    seq = pandas.date_range(start=str(start_year) + "-10-01 01:00:00",
                            end=str(start_year + 1) + "-07-01 01:00:00",
                            freq='H')

    # Initialize a wheat canopy
    g, wheat, domain_area, domain = initialize_stand(age=0.,
                                                     length=0.1,
                                                     width=0.2,
                                                     sowing_density=150,
                                                     plant_density=150,
                                                     inter_row=0.12,
                                                     seed=3)

    # Initialize the models for septoria
    if 'alinea.alep.septoria_age_physio' in sys.modules:
        del (sys.modules['alinea.alep.septoria_age_physio'])
    if variability == True:
        septoria = variable_septoria(**kwds)
    else:
        septoria = plugin_septoria(model="septoria_age_physio")
    DU = septoria.dispersal_unit()
    inoculator = RandomInoculation()
    growth_controler = NoPriorityGrowthControl()
    infection_controler = BiotrophDUPositionModel()
    sen_model = WheatSeptoriaPositionedSenescence(g, label='LeafElement')
    emitter = SeptoriaRainEmission(domain_area=domain_area)
    transporter = Septo3DSplash(reference_surface=domain_area)
    washor = RapillyWashing()

    # Define the schedule of calls for each model
    every_h = time_filter(seq, delay=1)
    every_24h = time_filter(seq, delay=24)
    every_rain = rain_filter(seq, weather)
    weather_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    wheat_timing = IterWithDelays(*time_control(seq, every_24h, weather.data))
    septo_timing = IterWithDelays(*time_control(seq, every_h, weather.data))
    rain_timing = IterWithDelays(*time_control(seq, every_rain, weather.data))

    # Call leaf inspectors for target blades (top 3)
    inspectors = {}
    first_blade = 80
    ind = 4.
    for blade in range(first_blade, 104, 8):
        ind -= 1
        inspectors[ind] = LeafInspector(g, blade_id=blade)

    # Simulation loop
    for i, controls in enumerate(
            zip(weather_timing, wheat_timing, septo_timing, rain_timing)):
        weather_eval, wheat_eval, septo_eval, rain_eval = controls

        # Update date
        date = weather_eval.value.index[0]

        # Get weather for date and add it as properties on leaves
        if weather_eval:
            set_properties(
                g,
                label='LeafElement',
                temp=weather_eval.value.temperature_air[0],
                wetness=weather_eval.value.wetness[0],
                relative_humidity=weather_eval.value.relative_humidity[0],
                wind_speed=weather_eval.value.wind_speed[0])
        if rain_eval:
            set_properties(g,
                           label='LeafElement',
                           rain_intensity=rain_eval.value.rain.mean(),
                           rain_duration=len(rain_eval.value.rain)
                           if rain_eval.value.rain.sum() > 0 else 0.)

        # Grow wheat canopy
        if wheat_eval:
            print(date)
            g, _ = grow_canopy(g, wheat, wheat_eval.value)
            # Note : The position of senescence goes back to its initial value after
            # a while for undetermined reason
            # --> temporary hack for keeping senescence position low when it is over
            positions = g.property('position_senescence')
            are_green = g.property('is_green')
            leaves = get_leaves(g, label='LeafElement')
            positions.update({
                leaf: (0 if positions[leaf] == 1 and not are_green[leaf] else
                       positions[leaf])
                for leaf in leaves
            })

        # Develop disease
        if septo_eval:
            sen_model.find_senescent_lesions(g, label='LeafElement')
            update_healthy_area(g, label='LeafElement')
            if rain_eval and i <= 500:
                # Refill pool of initial inoculum to simulate differed availability
                if rd.random() < 0.4:
                    dispersal_units = [
                        DU(nb_spores=rd.randint(1, 100), status='emitted')
                        for i in range(rd.randint(0, 3))
                    ]
                    initiate(g, dispersal_units, inoculator)
            infect(g, septo_eval.dt, infection_controler, label='LeafElement')
            update(g,
                   septo_eval.dt,
                   growth_controler,
                   sen_model,
                   label='LeafElement')

        les = g.property('lesions')
        lesions = sum([l for l in les.values()], [])

        print([l.fungus.degree_days_to_chlorosis for l in lesions])

        # if len(lesions)>10:
        # import pdb
        # pdb.set_trace()

        if rain_eval:
            g, nb = disperse(g,
                             emitter,
                             transporter,
                             "septoria",
                             label='LeafElement')
            wash(g, washor, rain_eval.value.rain.mean(), label='LeafElement')

        # Save outputs
        for inspector in inspectors.itervalues():
            inspector.update_variables(g)
            inspector.update_du_variables(g)

        if wheat_eval:
            plot_severity_by_leaf(g)

    return inspectors
Esempio n. 10
0
    inspector.surface_spo.append(surface_spo)
    inspector.ratio_inc.append(100. * surface_inc /
                               total_area if total_area > 0. else 0.)
    inspector.ratio_chlo.append(100. * surface_chlo /
                                total_area if total_area > 0. else 0.)
    inspector.ratio_nec.append(100. * surface_nec /
                               total_area if total_area > 0. else 0.)
    inspector.ratio_spo.append(100. * surface_spo /
                               total_area if total_area > 0. else 0.)


# Test ###############################################################
# Initialize a wheat canopy
g, wheat, domain_area = initialize_stand(age=1000.,
                                         length=0.1,
                                         width=0.2,
                                         sowing_density=150,
                                         plant_density=150,
                                         inter_row=0.12)

# Generate a pool of lesions with given surface to be distributed on target leaves
nb_lesions = 50
surface_inc = 0.1
surface_chlo = 0.2
surface_nec = 0.3
surface_spo = 0.4
lesions = generate_lesions_with_surfaces(nb_lesions, surface_inc, surface_chlo,
                                         surface_nec, surface_spo)

# Select target blades (top 3)
blade_1 = find_blade_id(g, leaf_rank=1)
blade_2 = find_blade_id(g, leaf_rank=2)