Esempio n. 1
0
def windowed_df(
    pos, ac1, ac2, size=None, start=None, stop=None, step=None, windows=None, is_accessible=None, fill=np.nan
):
    """Calculate the density of fixed differences between two populations in
    windows over a single chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    df : ndarray, float, shape (n_windows,)
        Per-base density of fixed differences in each window.
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    See Also
    --------

    allel.model.locate_fixed_differences

    """

    # check inputs
    pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # locate fixed differences
    loc_df = locate_fixed_differences(ac1, ac2)

    # count number of fixed differences in windows
    n_df, windows, counts = windowed_statistic(
        pos,
        values=loc_df,
        statistic=np.count_nonzero,
        size=size,
        start=start,
        stop=stop,
        step=step,
        windows=windows,
        fill=0,
    )

    # calculate value per base
    df, n_bases = per_base(n_df, windows, is_accessible=is_accessible, fill=fill)

    return df, windows, n_bases, counts
Esempio n. 2
0
def windowed_watterson_theta(
    pos, ac, size=None, start=None, stop=None, step=None, windows=None, is_accessible=None, fill=np.nan
):
    """Calculate the value of Watterson's estimator in windows over a single
    chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    theta_hat_w : ndarray, float, shape (n_windows,)
        Watterson's estimator (theta hat per base).
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> theta_hat_w, windows, n_bases, counts = allel.stats.windowed_watterson_theta(
    ...     pos, ac, size=10, start=1, stop=31
    ... )
    >>> theta_hat_w
    array([ 0.10909091,  0.16363636,  0.04958678])
    >>> windows
    array([[ 1, 10],
           [11, 20],
           [21, 31]])
    >>> n_bases
    array([10, 10, 11])
    >>> counts
    array([3, 4, 2])

    """  # flake8: noqa

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
    if not hasattr(ac, "count_segregating"):
        ac = AlleleCountsArray(ac, copy=False)

    # locate segregating variants
    is_seg = ac.is_segregating()

    # count segregating variants in windows
    S, windows, counts = windowed_statistic(
        pos, is_seg, statistic=np.count_nonzero, size=size, start=start, stop=stop, step=step, windows=windows, fill=0
    )

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # absolute value of Watterson's theta
    theta_hat_w_abs = S / a1

    # theta per base
    theta_hat_w, n_bases = per_base(theta_hat_w_abs, windows=windows, is_accessible=is_accessible, fill=fill)

    return theta_hat_w, windows, n_bases, counts
Esempio n. 3
0
def windowed_divergence(
    pos, ac1, ac2, size=None, start=None, stop=None, step=None, windows=None, is_accessible=None, fill=np.nan
):
    """Estimate nucleotide divergence between two populations in windows
    over a single chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    Dxy : ndarray, float, shape (n_windows,)
        Nucleotide divergence in each window.
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    Examples
    --------

    Simplest case, two haplotypes in each population::

        >>> import allel
        >>> h = allel.HaplotypeArray([[0, 0, 0, 0],
        ...                           [0, 0, 0, 1],
        ...                           [0, 0, 1, 1],
        ...                           [0, 1, 1, 1],
        ...                           [1, 1, 1, 1],
        ...                           [0, 0, 1, 2],
        ...                           [0, 1, 1, 2],
        ...                           [0, 1, -1, -1],
        ...                           [-1, -1, -1, -1]])
        >>> ac1 = h.count_alleles(subpop=[0, 1])
        >>> ac2 = h.count_alleles(subpop=[2, 3])
        >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
        >>> dxy, windows, n_bases, counts = windowed_divergence(
        ...     pos, ac1, ac2, size=10, start=1, stop=31
        ... )
        >>> dxy
        array([ 0.15 ,  0.225,  0.   ])
        >>> windows
        array([[ 1, 10],
               [11, 20],
               [21, 31]])
        >>> n_bases
        array([10, 10, 11])
        >>> counts
        array([3, 4, 2])

    """

    # check inputs
    pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # calculate mean pairwise divergence
    mpd = mean_pairwise_difference_between(ac1, ac2, fill=0)

    # sum in windows
    mpd_sum, windows, counts = windowed_statistic(
        pos, values=mpd, statistic=np.sum, size=size, start=start, stop=stop, step=step, windows=windows, fill=0
    )

    # calculate value per base
    dxy, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible, fill=fill)

    return dxy, windows, n_bases, counts
Esempio n. 4
0
def windowed_watterson_theta(pos,
                             ac,
                             size=None,
                             start=None,
                             stop=None,
                             step=None,
                             windows=None,
                             is_accessible=None,
                             fill=np.nan):
    """Calculate the value of Watterson's estimator in windows over a single
    chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    theta_hat_w : ndarray, float, shape (n_windows,)
        Watterson's estimator (theta hat per base).
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> theta_hat_w, windows, n_bases, counts = allel.windowed_watterson_theta(
    ...     pos, ac, size=10, start=1, stop=31
    ... )
    >>> theta_hat_w
    array([0.10909091, 0.16363636, 0.04958678])
    >>> windows
    array([[ 1, 10],
           [11, 20],
           [21, 31]])
    >>> n_bases
    array([10, 10, 11])
    >>> counts
    array([3, 4, 2])

    """  # flake8: noqa

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
    if not hasattr(ac, 'count_segregating'):
        ac = AlleleCountsArray(ac, copy=False)

    # locate segregating variants
    is_seg = ac.is_segregating()

    # count segregating variants in windows
    S, windows, counts = windowed_statistic(pos,
                                            is_seg,
                                            statistic=np.count_nonzero,
                                            size=size,
                                            start=start,
                                            stop=stop,
                                            step=step,
                                            windows=windows,
                                            fill=0)

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # absolute value of Watterson's theta
    theta_hat_w_abs = S / a1

    # theta per base
    theta_hat_w, n_bases = per_base(theta_hat_w_abs,
                                    windows=windows,
                                    is_accessible=is_accessible,
                                    fill=fill)

    return theta_hat_w, windows, n_bases, counts
Esempio n. 5
0
def windowed_df(pos,
                ac1,
                ac2,
                size=None,
                start=None,
                stop=None,
                step=None,
                windows=None,
                is_accessible=None,
                fill=np.nan):
    """Calculate the density of fixed differences between two populations in
    windows over a single chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    df : ndarray, float, shape (n_windows,)
        Per-base density of fixed differences in each window.
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    See Also
    --------

    allel.model.locate_fixed_differences

    """

    # check inputs
    pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # locate fixed differences
    loc_df = locate_fixed_differences(ac1, ac2)

    # count number of fixed differences in windows
    n_df, windows, counts = windowed_statistic(pos,
                                               values=loc_df,
                                               statistic=np.count_nonzero,
                                               size=size,
                                               start=start,
                                               stop=stop,
                                               step=step,
                                               windows=windows,
                                               fill=0)

    # calculate value per base
    df, n_bases = per_base(n_df,
                           windows,
                           is_accessible=is_accessible,
                           fill=fill)

    return df, windows, n_bases, counts
Esempio n. 6
0
def windowed_divergence(pos,
                        ac1,
                        ac2,
                        size=None,
                        start=None,
                        stop=None,
                        step=None,
                        windows=None,
                        is_accessible=None,
                        fill=np.nan):
    """Estimate nucleotide divergence between two populations in windows
    over a single chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    Dxy : ndarray, float, shape (n_windows,)
        Nucleotide divergence in each window.
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    Examples
    --------

    Simplest case, two haplotypes in each population::

        >>> import allel
        >>> h = allel.HaplotypeArray([[0, 0, 0, 0],
        ...                           [0, 0, 0, 1],
        ...                           [0, 0, 1, 1],
        ...                           [0, 1, 1, 1],
        ...                           [1, 1, 1, 1],
        ...                           [0, 0, 1, 2],
        ...                           [0, 1, 1, 2],
        ...                           [0, 1, -1, -1],
        ...                           [-1, -1, -1, -1]])
        >>> ac1 = h.count_alleles(subpop=[0, 1])
        >>> ac2 = h.count_alleles(subpop=[2, 3])
        >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
        >>> dxy, windows, n_bases, counts = windowed_divergence(
        ...     pos, ac1, ac2, size=10, start=1, stop=31
        ... )
        >>> dxy
        array([0.15 , 0.225, 0.   ])
        >>> windows
        array([[ 1, 10],
               [11, 20],
               [21, 31]])
        >>> n_bases
        array([10, 10, 11])
        >>> counts
        array([3, 4, 2])

    """

    # check inputs
    pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # calculate mean pairwise divergence
    mpd = mean_pairwise_difference_between(ac1, ac2, fill=0)

    # sum in windows
    mpd_sum, windows, counts = windowed_statistic(pos,
                                                  values=mpd,
                                                  statistic=np.sum,
                                                  size=size,
                                                  start=start,
                                                  stop=stop,
                                                  step=step,
                                                  windows=windows,
                                                  fill=0)

    # calculate value per base
    dxy, n_bases = per_base(mpd_sum,
                            windows,
                            is_accessible=is_accessible,
                            fill=fill)

    return dxy, windows, n_bases, counts
Esempio n. 7
0
def windowed_diversity(pos, ac, size=None, start=None, stop=None, step=None,
                       windows=None, is_accessible=None, fill=np.nan):
    """Estimate nucleotide diversity in windows over a single
    chromosome/contig.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    size : int, optional
        The window size (number of bases).
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    step : int, optional
        The distance between start positions of windows. If not given,
        defaults to the window size, i.e., non-overlapping windows.
    windows : array_like, int, shape (n_windows, 2), optional
        Manually specify the windows to use as a sequence of (window_start,
        window_stop) positions, using 1-based coordinates. Overrides the
        size/start/stop/step parameters.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.
    fill : object, optional
        The value to use where a window is completely inaccessible.

    Returns
    -------

    pi : ndarray, float, shape (n_windows,)
        Nucleotide diversity in each window.
    windows : ndarray, int, shape (n_windows, 2)
        The windows used, as an array of (window_start, window_stop) positions,
        using 1-based coordinates.
    n_bases : ndarray, int, shape (n_windows,)
        Number of (accessible) bases in each window.
    counts : ndarray, int, shape (n_windows,)
        Number of variants in each window.

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> pi, windows, n_bases, counts = allel.windowed_diversity(
    ...     pos, ac, size=10, start=1, stop=31
    ... )
    >>> pi
    array([0.11666667, 0.21666667, 0.09090909])
    >>> windows
    array([[ 1, 10],
           [11, 20],
           [21, 31]])
    >>> n_bases
    array([10, 10, 11])
    >>> counts
    array([3, 4, 2])

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
    # masking inaccessible sites from pos and ac
    pos, ac = mask_inaccessible(is_accessible, pos, ac)

    # calculate mean pairwise difference
    mpd = mean_pairwise_difference(ac, fill=0)

    # sum differences in windows
    mpd_sum, windows, counts = windowed_statistic(
        pos, values=mpd, statistic=np.sum, size=size, start=start, stop=stop,
        step=step, windows=windows, fill=0
    )

    # calculate value per base
    pi, n_bases = per_base(mpd_sum, windows, is_accessible=is_accessible,
                           fill=fill)

    return pi, windows, n_bases, counts