Esempio n. 1
0
    def __init__(self,
                 vocab,
                 encoder: FeedForward,
                 mean_projection: FeedForward,
                 log_variance_projection: FeedForward,
                 decoder: FeedForward,
                 kld_clamp: Optional[float] = None,
                 z_dropout: float = 0.2) -> None:
        super(LogisticNormal, self).__init__(vocab)
        self.encoder = encoder
        self.mean_projection = mean_projection
        self.log_variance_projection = log_variance_projection
        self._kld_clamp = kld_clamp
        self._decoder = torch.nn.Linear(decoder.get_input_dim(), decoder.get_output_dim(),
                                        bias=False)
        self._decoder_rationale = torch.nn.Linear(decoder.get_input_dim(), decoder.get_output_dim(),
                                        bias=False)
        self._z_dropout = torch.nn.Dropout(z_dropout)

        mem_params = AttrDict({
            "sparse": False,
            "k_dim": 128,
            "heads": 4,
            "knn": 32,
            "n_keys": 512,  # the memory will have (n_keys ** 2) values
            "query_batchnorm": True,
            "input_dropout": 0,
            "query_dropout": 0,
            "value_dropout": 0,
        })
        # self.memory = HashingMemory(encoder.get_output_dim(), decoder.get_input_dim(), mem_params)

        self.latent_dim = mean_projection.get_output_dim()
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 attend_feedforward: FeedForward,
                 similarity_function: SimilarityFunction,
                 compare_feedforward: FeedForward,
                 aggregate_feedforward: FeedForward,
                 premise_encoder: Optional[Seq2SeqEncoder] = None,
                 hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(DecomposableAttention, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._attend_feedforward = TimeDistributed(attend_feedforward)
        self._matrix_attention = MatrixAttention(similarity_function)
        self._compare_feedforward = TimeDistributed(compare_feedforward)
        self._aggregate_feedforward = aggregate_feedforward
        self._premise_encoder = premise_encoder
        self._hypothesis_encoder = hypothesis_encoder or premise_encoder

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        if text_field_embedder.get_output_dim() != attend_feedforward.get_input_dim():
            raise ConfigurationError("Output dimension of the text_field_embedder (dim: {}), "
                                     "must match the input_dim of the FeedForward layer "
                                     "attend_feedforward, (dim: {}). ".format(text_field_embedder.get_output_dim(),
                                                                              attend_feedforward.get_input_dim()))
        if aggregate_feedforward.get_output_dim() != self._num_labels:
            raise ConfigurationError("Final output dimension (%d) must equal num labels (%d)" %
                                     (aggregate_feedforward.get_output_dim(), self._num_labels))

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Esempio n. 3
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 context_layer: Seq2SeqEncoder,
                 mention_feedforward: FeedForward,
                 antecedent_feedforward: FeedForward,
                 feature_size: int,
                 max_span_width: int,
                 spans_per_word: float,
                 max_antecedents: int,
                 lexical_dropout: float = 0.2,
                 context_layer_back: Seq2SeqEncoder = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(CoreferenceResolver, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._context_layer = context_layer
        self._context_layer_back = context_layer_back
        self._antecedent_feedforward = TimeDistributed(antecedent_feedforward)
        feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(
                torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
        self._mention_pruner = SpanPruner(feedforward_scorer)
        self._antecedent_scorer = TimeDistributed(
            torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1))
        # TODO check the output dim when two context layers are passed through
        self._endpoint_span_extractor = EndpointSpanExtractor(
            context_layer.get_output_dim(),
            combination="x,y",
            num_width_embeddings=max_span_width,
            span_width_embedding_dim=feature_size,
            bucket_widths=False)
        self._attentive_span_extractor = SelfAttentiveSpanExtractor(
            input_dim=text_field_embedder.get_output_dim())

        # 10 possible distance buckets.
        self._num_distance_buckets = 10
        self._distance_embedding = Embedding(self._num_distance_buckets,
                                             feature_size)
        self._speaker_embedding = Embedding(2, feature_size)
        self.genres = {
            g: i
            for i, g in enumerate(['bc', 'bn', 'mz', 'nw', 'pt', 'tc', 'wb'])
        }
        self._genre_embedding = Embedding(len(self.genres), feature_size)

        self._max_span_width = max_span_width
        self._spans_per_word = spans_per_word
        self._max_antecedents = max_antecedents

        self._mention_recall = MentionRecall()
        self._conll_coref_scores = ConllCorefScores()
        if lexical_dropout > 0:
            self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout)
        else:
            self._lexical_dropout = lambda x: x
        self._feature_dropout = torch.nn.Dropout(0.2)
        initializer(self)
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 aggregate_feedforward: FeedForward,
                 premise_encoder: Optional[Seq2SeqEncoder] = None,
                 hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 aggregate_premise: Optional[str] = "max",
                 aggregate_hypothesis: Optional[str] = "max",
                 embeddings_dropout_value: Optional[float] = 0.0,
                 share_encoders: Optional[bool] = False) -> None:
        super(StackedNNAggregateCustom, self).__init__(vocab)

        self._text_field_embedder = text_field_embedder
        if embeddings_dropout_value > 0.0:
            self._embeddings_dropout = torch.nn.Dropout(p=embeddings_dropout_value)
        else:
            self._embeddings_dropout = lambda x: x

        self._aggregate_feedforward = aggregate_feedforward
        self._premise_encoder = premise_encoder
        self._hypothesis_encoder = hypothesis_encoder

        self._premise_aggregate = aggregate_premise
        self._hypothesis_aggregate = aggregate_hypothesis

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        premise_output_dim = self._text_field_embedder.get_output_dim()
        if self._premise_encoder is not None:
            premise_output_dim = self._premise_encoder.get_output_dim()

        hypothesis_output_dim = self._text_field_embedder.get_output_dim()
        if self._hypothesis_encoder is not None:
            hypothesis_output_dim = self._hypothesis_encoder.get_output_dim()

        if premise_output_dim != hypothesis_output_dim:
            raise ConfigurationError("Output dimension of the premise_encoder (dim: {}), "
                                     "plus hypothesis_encoder (dim: {})"
                                     "must match! "
                                     .format(premise_output_dim,
                                             hypothesis_output_dim))

        if premise_output_dim * 4 != \
                aggregate_feedforward.get_input_dim():
            raise ConfigurationError("The output of aggregate_feedforward input dim ({2})  "
                                     "should be {3} = 4 x {0} ({1} = premise_output_dim == hypothesis_output_dim)!"
                                     .format(premise_output_dim,
                                             hypothesis_output_dim,
                                             aggregate_feedforward.get_input_dim(),
                                             4 * premise_output_dim))

        if aggregate_feedforward.get_output_dim() != self._num_labels:
            raise ConfigurationError("Final output dimension (%d) must equal num labels (%d)" %
                                     (aggregate_feedforward.get_output_dim(), self._num_labels))

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Esempio n. 5
0
    def __init__(self,
                 vocab: Vocabulary,
                 mention_feedforward: FeedForward,
                 relation_feedforward: FeedForward,
                 feature_size: int,
                 spans_per_word: float,
                 span_emb_dim: int,
                 rel_prop: int = 0,
                 rel_prop_dropout_A: float = 0.0,
                 rel_prop_dropout_f: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 positive_label_weight: float = 1.0,
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(RelationExtractor1, self).__init__(vocab, regularizer)

        # Need to hack this for cases where there's no relation data. It breaks Ulme's code.
        self._n_labels = max(vocab.get_vocab_size("relation_labels"), 1)

        # Span candidate scorer.
        # TODO(dwadden) make sure I've got the input dim right on this one.
        feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(
                torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
        self._mention_pruner = Pruner(feedforward_scorer)

        # Relation scorer.
        self._relation_feedforward = relation_feedforward
        self._relation_scorer = torch.nn.Linear(
            relation_feedforward.get_output_dim(), self._n_labels)

        self._spans_per_word = spans_per_word

        # TODO(dwadden) Add code to compute relation F1.
        # self._candidate_recall = CandidateRecall()
        self._relation_metrics = RelationMetrics1()

        class_weights = torch.cat([
            torch.tensor([1.0]),
            positive_label_weight * torch.ones(self._n_labels)
        ])
        self._loss = torch.nn.CrossEntropyLoss(reduction="sum",
                                               ignore_index=-1,
                                               weight=class_weights)
        self.rel_prop = rel_prop

        # Relation Propagation
        self._A_network = FeedForward(input_dim=self._n_labels,
                                      num_layers=1,
                                      hidden_dims=span_emb_dim,
                                      activations=lambda x: x,
                                      dropout=rel_prop_dropout_A)
        self._f_network = FeedForward(input_dim=2 * span_emb_dim,
                                      num_layers=1,
                                      hidden_dims=span_emb_dim,
                                      activations=torch.nn.Sigmoid(),
                                      dropout=rel_prop_dropout_f)

        initializer(self)
Esempio n. 6
0
    def __init__(
        self,
        vocab: Vocabulary,
        text_field_embedder: TextFieldEmbedder,
        context_layer: Seq2SeqEncoder,
        mention_feedforward: FeedForward,
        antecedent_feedforward: FeedForward,
        feature_size: int,
        max_span_width: int,
        spans_per_word: float,
        max_antecedents: int,
        lexical_dropout: float = 0.2,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super().__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._context_layer = context_layer
        self._antecedent_feedforward = TimeDistributed(antecedent_feedforward)
        feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(torch.nn.Linear(mention_feedforward.get_output_dim(), 1)),
        )
        self._mention_pruner = Pruner(feedforward_scorer)
        self._antecedent_scorer = TimeDistributed(
            torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1)
        )

        self._endpoint_span_extractor = EndpointSpanExtractor(
            context_layer.get_output_dim(),
            combination="x,y",
            num_width_embeddings=max_span_width,
            span_width_embedding_dim=feature_size,
            bucket_widths=False,
        )
        self._attentive_span_extractor = SelfAttentiveSpanExtractor(
            input_dim=text_field_embedder.get_output_dim()
        )

        # 10 possible distance buckets.
        self._num_distance_buckets = 10
        self._distance_embedding = Embedding(self._num_distance_buckets, feature_size)

        self._max_span_width = max_span_width
        self._spans_per_word = spans_per_word
        self._max_antecedents = max_antecedents

        self._mention_recall = MentionRecall()
        self._conll_coref_scores = ConllCorefScores()
        if lexical_dropout > 0:
            self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout)
        else:
            self._lexical_dropout = lambda x: x
        initializer(self)
Esempio n. 7
0
    def __init__(self,
                 vocab: Vocabulary,
                 mention_feedforward: FeedForward,
                 relation_feedforward: FeedForward,
                 spans_per_word: float,
                 span_emb_dim: int,
                 use_biaffine_rel: bool,
                 rel_prop: int = 0,
                 rel_prop_dropout_A: float = 0.0,
                 rel_prop_dropout_f: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 positive_label_weight: float = 1.0,
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(RelationExtractor, self).__init__(vocab, regularizer)

        self._n_labels = max(vocab.get_vocab_size("relation_labels"), 1)

        feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
        self._mention_pruner = Pruner(feedforward_scorer)

        # Relation scorer.
        self._use_biaffine_rel = use_biaffine_rel
        if self._use_biaffine_rel:
            self._biaffine = torch.nn.ModuleList()
            for _ in range(self._n_labels):
                self._biaffine.append(torch.nn.Linear(span_emb_dim, span_emb_dim))
        else:
            self._relation_feedforward = relation_feedforward
            self._relation_scorer = torch.nn.Linear(relation_feedforward.get_output_dim(), self._n_labels)

        self._spans_per_word = spans_per_word

        self._relation_metrics = RelationMetrics1()

        class_weights = torch.cat([torch.tensor([1.0]), positive_label_weight * torch.ones(self._n_labels)])
        self._loss = torch.nn.CrossEntropyLoss(reduction="sum", ignore_index=-1, weight=class_weights)
        self.rel_prop = rel_prop

        # Relation Propagation
        self._A_network = FeedForward(input_dim=self._n_labels,
                                      num_layers=1,
                                      hidden_dims=span_emb_dim,
                                      activations=lambda x: x,
                                      dropout=rel_prop_dropout_A)
        self._f_network = FeedForward(input_dim=2*span_emb_dim,
                                      num_layers=1,
                                      hidden_dims=span_emb_dim,
                                      activations=torch.nn.Sigmoid(),
                                      dropout=rel_prop_dropout_f)

        initializer(self)
 def __init__(self,
              vocab: Vocabulary,
              text_field_embedder: TextFieldEmbedder,
              context_layer: Seq2SeqEncoder,
              mention_feedforward: FeedForward,
              antecedent_feedforward: FeedForward,
              feature_size: int,
              max_span_width: int,
              spans_per_word: float,
              max_antecedents: int,
              lexical_dropout: float = 0.2,
              initializer: InitializerApplicator = InitializerApplicator(),
              regularizer: Optional[RegularizerApplicator] = None) -> None:
     super(ALCoreferenceResolver, self).__init__(
         vocab,
         text_field_embedder,
         context_layer,
         mention_feedforward,
         antecedent_feedforward,
         feature_size,
         max_span_width,
         spans_per_word,
         max_antecedents,
         lexical_dropout,
         initializer,
         regularizer,
     )
     feedforward_scorer = torch.nn.Sequential(
         TimeDistributed(mention_feedforward),
         TimeDistributed(
             torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
     self._mention_pruner = Pruner(feedforward_scorer)
     initializer(self)
Esempio n. 9
0
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 input_attention: Attention,
                 num_start_types: int,
                 num_entity_types: int,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0,
                 unlinked_terminal_indices: List[int] = None) -> None:
        super(WikiTablesDecoderStep, self).__init__()
        self._mixture_feedforward = mixture_feedforward
        self._entity_type_embedding = Embedding(num_entity_types,
                                                action_embedding_dim)
        self._input_attention = input_attention

        self._num_start_types = num_start_types
        self._start_type_predictor = Linear(encoder_output_dim,
                                            num_start_types)

        # Decoder output dim needs to be the same as the encoder output dim since we initialize the
        # hidden state of the decoder with the final hidden state of the encoder.
        output_dim = encoder_output_dim
        input_dim = output_dim
        # Our decoder input will be the concatenation of the decoder hidden state and the previous
        # action embedding, and we'll project that down to the decoder's `input_dim`, which we
        # arbitrarily set to be the same as `output_dim`.
        self._input_projection_layer = Linear(
            output_dim + action_embedding_dim, input_dim)
        # Before making a prediction, we'll compute an attention over the input given our updated
        # hidden state. Then we concatenate those with the decoder state and project to
        # `action_embedding_dim` to make a prediction.
        self._output_projection_layer = Linear(output_dim + encoder_output_dim,
                                               action_embedding_dim)
        if unlinked_terminal_indices is not None:
            # This means we are using coverage to train the parser.
            # These factors are used to add the embeddings of yet to be produced actions to the
            # predicted embedding, and to boost the action logits of yet to be produced linked
            # actions, respectively.
            self._unlinked_checklist_multiplier = Parameter(
                torch.FloatTensor([1.0]))
            self._linked_checklist_multiplier = Parameter(
                torch.FloatTensor([1.0]))

        self._unlinked_terminal_indices = unlinked_terminal_indices
        # TODO(pradeep): Do not hardcode decoder cell type.
        self._decoder_cell = LSTMCell(input_dim, output_dim)

        if mixture_feedforward is not None:
            check_dimensions_match(output_dim,
                                   mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim",
                                   "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim",
                                   "dimension for scalar value")

        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 input_attention: Attention,
                 activation: Activation = Activation.by_name('relu')(),
                 predict_start_type_separately: bool = True,
                 num_start_types: int = None,
                 add_action_bias: bool = True,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0) -> None:
        super().__init__(encoder_output_dim=encoder_output_dim,
                         action_embedding_dim=action_embedding_dim,
                         input_attention=input_attention,
                         num_start_types=num_start_types,
                         activation=activation,
                         predict_start_type_separately=predict_start_type_separately,
                         add_action_bias=add_action_bias,
                         dropout=dropout)
        self._linked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))
        self._mixture_feedforward = mixture_feedforward

        if mixture_feedforward is not None:
            check_dimensions_match(encoder_output_dim, mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim", "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim", "dimension for scalar value")
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 attend_feedforward: FeedForward,
                 similarity_function: SimilarityFunction,
                 compare_feedforward: FeedForward,
                 classifier_feedforward: FeedForward,
                 context_encoder: Optional[Seq2SeqEncoder] = None,
                 response_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(DialogueContextCoherenceAttentionClassifier, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.num_classes = vocab.get_vocab_size("labels")
        self.context_encoder = context_encoder
        self.response_encoder = response_encoder
        self.attend_feedforward = TimeDistributed(attend_feedforward)
        self.matrix_attention = MatrixAttention(similarity_function)
        self.compare_feedforward = TimeDistributed(compare_feedforward)
        self.classifier_feedforward = classifier_feedforward
        labels = self.vocab.get_index_to_token_vocabulary('labels')
        pos_label_index = list(labels.keys())[list(labels.values()).index('neg')]

        check_dimensions_match(text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(),
                               "text field embedding dim", "attend feedforward input dim")
        check_dimensions_match(classifier_feedforward.get_output_dim(), self.num_classes,
                               "final output dimension", "number of labels")

        self.metrics = {
            "accuracy": CategoricalAccuracy()
            # "f1": F1Measure(positive_label=pos_label_index)
        }
        self.loss = torch.nn.CrossEntropyLoss()
        initializer(self)
Esempio n. 12
0
    def __init__(self,
                 vocab,
                 feature_size: int,
                 max_span_width: int,
                 keep_rate: int,
                 mlp_dropout: float = 0.4,
                 embedder_type=None,
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(PrePruner, self).__init__(vocab, regularizer)
        self.keep_rate = keep_rate
        self.embedder = get_embeddings(embedder_type, self.vocab)
        self.ffn = FeedForward(300, 2, 300, F.relu, 0.5)
        embedding_dim = self.embedder.get_output_dim()

        self._span_extractor = PoolingSpanExtractor(
            embedding_dim,
            num_width_embeddings=max_span_width,
            span_width_embedding_dim=feature_size,
            bucket_widths=False)
        entity_feedforward = FeedForward(self._span_extractor.get_output_dim(),
                                         2, 150, F.relu, mlp_dropout)

        self.feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(entity_feedforward),
            TimeDistributed(
                torch.nn.Linear(entity_feedforward.get_output_dim(), 1)),
        )
        self._lexical_dropout = torch.nn.Dropout(p=0.1)

        self.loss = torch.nn.BCELoss()
        self._metric_f1 = FBetaMeasure()
Esempio n. 13
0
    def __init__(
        self,
        vocab: Vocabulary,
        mention_feedforward: FeedForward,
        label_namespace: str,
        n_features: int = 0,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
        document_embedding: torch.nn.Embedding = None,
        doc_to_idx_mapping: dict = None,
        graph_embedding_dim: int = None,
    ) -> None:
        super(SpanClassifier, self).__init__(vocab, regularizer)
        self._label_namespace = label_namespace

        self._mention_feedforward = TimeDistributed(mention_feedforward)
        self._use_graph_embeddings = graph_embedding_dim is not None

        features_dim = n_features + graph_embedding_dim if self._use_graph_embeddings else n_features

        self._ner_scorer = TimeDistributed(
            torch.nn.Linear(
                mention_feedforward.get_output_dim() + features_dim, 1))
        self._ner_metrics = BinaryThresholdF1()
        self._document_embedding = document_embedding
        self._doc_to_idx_mapping = doc_to_idx_mapping

        initializer(self)
Esempio n. 14
0
    def __init__(self,
                 text_field_embedder: TextFieldEmbedder,
                 # frozen_embeddings: bool = True,
                 mapper: FeedForward = None,
                 bias: bool = True,
                 pre_normalization: Normalization = None,
                 post_normalization: Normalization = None,
                 normalization: Normalization = None):
        super().__init__()

        self._bias = bias
        self._text_field_embedder = text_field_embedder
        self._output_dim = self._text_field_embedder.get_output_dim()

        if normalization is not None:
            pre_normalization = normalization
        self._pre_normalization = pre_normalization
        self._post_normalization = post_normalization

        # self._frozen_embeddings = frozen_embeddings
        # if self._frozen_embeddings:
        #     self._text_field_embedder.requires_grad_(False)

        # TODO Make sure mapper supports time-distributed out-of-the-box.
        if mapper is not None:
            self._mapper = mapper
            self._output_dim = mapper.get_output_dim()
        else:
            if bias:
                self._mapper = BiasOnly(self._output_dim)
            else:
                self._mapper = Module()
Esempio n. 15
0
    def __init__(self,
                 vocab: Vocabulary,
                 bert: TextFieldEmbedder,
                 classifier: FeedForward,
                 dropout: float = 0.1,
                 num_labels: int = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._bert = bert
        self._dropout = torch.nn.Dropout(dropout)

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
        else:
            self.dropout = None

        self._classifier = classifier
        if num_labels is None:
            self._num_labels = vocab.get_vocab_size(namespace="labels")
        else:
            self._num_labels = num_labels

        check_dimensions_match(bert.get_output_dim() * 2,
                               classifier.get_input_dim(), "bert output dim",
                               "classifier input dim")
        check_dimensions_match(classifier.get_output_dim(), self._num_labels,
                               "classifier output dim", "number of labels")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Esempio n. 16
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 attend_feedforward: FeedForward,
                 similarity_function: SimilarityFunction,
                 compare_feedforward: FeedForward,
                 aggregate_feedforward: FeedForward,
                 premise_encoder: Optional[Seq2SeqEncoder] = None,
                 hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(DecomposableAttention, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._attend_feedforward = TimeDistributed(attend_feedforward)
        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._compare_feedforward = TimeDistributed(compare_feedforward)
        self._aggregate_feedforward = aggregate_feedforward
        self._premise_encoder = premise_encoder
        self._hypothesis_encoder = hypothesis_encoder or premise_encoder

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(),
                               "text field embedding dim", "attend feedforward input dim")
        check_dimensions_match(aggregate_feedforward.get_output_dim(), self._num_labels,
                               "final output dimension", "number of labels")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 attend_feedforward: FeedForward,
                 similarity_function: SimilarityFunction,
                 compare_feedforward: FeedForward,
                 aggregate_feedforward: FeedForward,
                 premise_encoder: Optional[Seq2SeqEncoder] = None,
                 hypothesis_encoder: Optional[Seq2SeqEncoder] = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(DecomposableAttention, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._attend_feedforward = TimeDistributed(attend_feedforward)
        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._compare_feedforward = TimeDistributed(compare_feedforward)
        self._aggregate_feedforward = aggregate_feedforward
        self._premise_encoder = premise_encoder
        self._hypothesis_encoder = hypothesis_encoder or premise_encoder

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), attend_feedforward.get_input_dim(),
                               "text field embedding dim", "attend feedforward input dim")
        check_dimensions_match(aggregate_feedforward.get_output_dim(), self._num_labels,
                               "final output dimension", "number of labels")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
Esempio n. 18
0
    def __init__(self,
                 vocab: Vocabulary,
                 bert: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 classifier: FeedForward,
                 aggregation: str = 'cls+max',
                 dropout: float = 0.1,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._bert = bert
        self._encoder = encoder
        self._aggregation = aggregation
        self._dropout = torch.nn.Dropout(dropout)
        self._classifier = classifier
        self._num_labels = vocab.get_vocab_size(namespace="labels")
        self._pooler = FeedForward(input_dim=bert.get_output_dim(),
                                   num_layers=1,
                                   hidden_dims=bert.get_output_dim(),
                                   activations=torch.tanh)

        check_dimensions_match(bert.get_output_dim(), encoder.get_input_dim(),
                               "bert output dim", "encoder input dim")
        check_dimensions_match(encoder.get_output_dim() * 2,
                               classifier.get_input_dim(),
                               "encoder output dim", "classifier input dim")
        check_dimensions_match(classifier.get_output_dim(), self._num_labels,
                               "classifier output dim", "number of labels")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 classifier_feedforward: FeedForward,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 class_weights: List[float] = (1.0, 1.0),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)
        self._text_field_embedder = text_field_embedder
        self.classifier_feedforward = classifier_feedforward
        self.num_classes = self.vocab.get_vocab_size('labels')

        assert self.num_classes == classifier_feedforward.get_output_dim()

        # if classifier_feedforward.get_input_dim() != 768:
        #     raise ConfigurationError(F"The input dimension of the classifier_feedforward, "
        #                              F"found {classifier_feedforward.get_input_dim()}, must match the "
        #                              F" output dimension of the bert embeder, {768}")
        index = 0
        if self.num_classes == 2:
            index = self.vocab.get_token_index("正类", "labels")
        self.metrics = {
            "accuracy": CategoricalAccuracy(),
            "f1": F1Measure(index)
        }
        # weights = torch.Tensor(class_weights)
        self.loss = torch.nn.CrossEntropyLoss()
        initializer(self)
Esempio n. 20
0
    def __init__(
        self,
        vocab: Vocabulary,
        text_field_embedder: TextFieldEmbedder,
        encoder: Seq2SeqEncoder,
        matrix_attention: MatrixAttention,
        projection_feedforward: FeedForward,
        inference_encoder: Seq2SeqEncoder,
        output_feedforward: FeedForward,
        output_logit: FeedForward,
        dropout: float = 0.5,
        initializer: InitializerApplicator = InitializerApplicator(),
        **kwargs,
    ) -> None:
        super().__init__(vocab, **kwargs)

        self._text_field_embedder = text_field_embedder
        self._encoder = encoder

        self._matrix_attention = matrix_attention
        self._projection_feedforward = projection_feedforward

        self._inference_encoder = inference_encoder

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None

        self._output_feedforward = output_feedforward
        self._output_logit = output_logit

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(
            text_field_embedder.get_output_dim(),
            encoder.get_input_dim(),
            "text field embedding dim",
            "encoder input dim",
        )
        check_dimensions_match(
            encoder.get_output_dim() * 4,
            projection_feedforward.get_input_dim(),
            "encoder output dim",
            "projection feedforward input",
        )
        check_dimensions_match(
            projection_feedforward.get_output_dim(),
            inference_encoder.get_input_dim(),
            "proj feedforward output dim",
            "inference lstm input dim",
        )

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()
        self._debug = 2

        initializer(self)
Esempio n. 21
0
    def __init__(
        self,
        vocab: Vocabulary = None,
        antecedent_feedforward: FeedForward = None,
        relation_cardinality: int = 2,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
    ) -> None:
        super(RelationExtractor, self).__init__(vocab, regularizer)
        self._antecedent_feedforward = TimeDistributed(antecedent_feedforward)
        self._antecedent_scorer = TimeDistributed(
            torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1))
        self._span_embedding_size = antecedent_feedforward.get_input_dim() // 4
        self._bias_vectors = torch.nn.Parameter(
            torch.zeros((1, 4, self._span_embedding_size)))

        self._relation_cardinality = relation_cardinality

        self._pos_weight_dict = {2: 1.0, 3: 1.0, 4: 3.3}

        self._pos_weight = self._pos_weight_dict[relation_cardinality]

        self._relation_type_map = {
            tuple(e): i
            for i, e in enumerate(
                combinations(used_entities, self._relation_cardinality))
        }

        self._binary_scores = BinaryThresholdF1()
        self._global_scores = NAryRelationMetrics()

        initializer(self)
Esempio n. 22
0
    def __init__(self,
                 vocab: Vocabulary,
                 mention_feedforward: FeedForward,
                 feature_size: int,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(NERTagger_Has_None, self).__init__(vocab, regularizer)

        # Number of classes determine the output dimension of the final layer
        self._n_labels = vocab.get_vocab_size('ner_labels')

        # TODO(dwadden) think of a better way to enforce this.
        # Null label is needed to keep track of when calculating the metrics
        null_label = vocab.get_token_index("", "ner_labels")
        assert null_label == 0  # If not, the dummy class won't correspond to the null label.

        self._ner_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(
                torch.nn.Linear(mention_feedforward.get_output_dim(),
                                self._n_labels)))

        self._ner_metrics = NERMetrics(self._n_labels, null_label)

        self._loss = torch.nn.CrossEntropyLoss(reduction="sum")

        initializer(self)
Esempio n. 23
0
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 input_attention: Attention,
                 activation: Activation = Activation.by_name('relu')(),
                 predict_start_type_separately: bool = True,
                 num_start_types: int = None,
                 add_action_bias: bool = True,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0) -> None:
        super().__init__(encoder_output_dim=encoder_output_dim,
                         action_embedding_dim=action_embedding_dim,
                         input_attention=input_attention,
                         num_start_types=num_start_types,
                         activation=activation,
                         predict_start_type_separately=predict_start_type_separately,
                         add_action_bias=add_action_bias,
                         dropout=dropout)
        self._linked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))
        self._mixture_feedforward = mixture_feedforward

        if mixture_feedforward is not None:
            check_dimensions_match(encoder_output_dim, mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim", "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim", "dimension for scalar value")
Esempio n. 24
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 context_layer: Seq2SeqEncoder,
                 complex_word_feedforward: FeedForward,
                 lexical_dropout: float = 0.2,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:

        super(NeuralMutilingualCWI, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._context_layer = context_layer

        self._complex_word_scorer = torch.nn.Sequential(
            complex_word_feedforward,
            torch.nn.Linear(complex_word_feedforward.get_output_dim(), 1))

        self._target_word_extractor = EndpointSpanExtractor(
            context_layer.get_output_dim(), combination="x,y")

        self._loss = torch.nn.BCELoss()
        self._metric = F1Measure(1)

        if lexical_dropout > 0:
            self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout)
        else:
            self._lexical_dropout = lambda x: x
        initializer(self)
    def __init__(
        self,
        encoder_output_dim: int,
        action_embedding_dim: int,
        input_attention: Attention,
        activation: Activation = Activation.by_name("relu")(),
        add_action_bias: bool = True,
        mixture_feedforward: FeedForward = None,
        dropout: float = 0.0,
        num_layers: int = 1,
    ) -> None:
        super().__init__(
            encoder_output_dim=encoder_output_dim,
            action_embedding_dim=action_embedding_dim,
            input_attention=input_attention,
            activation=activation,
            add_action_bias=add_action_bias,
            dropout=dropout,
            num_layers=num_layers,
        )
        self._mixture_feedforward = mixture_feedforward

        if mixture_feedforward is not None:
            check_dimensions_match(
                encoder_output_dim,
                mixture_feedforward.get_input_dim(),
                "hidden state embedding dim",
                "mixture feedforward input dim",
            )
            check_dimensions_match(
                mixture_feedforward.get_output_dim(),
                1,
                "mixture feedforward output dim",
                "dimension for scalar value",
            )
Esempio n. 26
0
    def __init__(
        self,
        vocab: Vocabulary,
        text_field_embedder: TextFieldEmbedder,
        span_extractor: SpanExtractor,
        encoder: Seq2SeqEncoder,
        feedforward: FeedForward = None,
        pos_tag_embedding: Embedding = None,
        initializer: InitializerApplicator = InitializerApplicator(),
        regularizer: Optional[RegularizerApplicator] = None,
        evalb_directory_path: str = DEFAULT_EVALB_DIR,
    ) -> None:
        super().__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.span_extractor = span_extractor
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.encoder = encoder
        self.feedforward_layer = TimeDistributed(
            feedforward) if feedforward else None
        self.pos_tag_embedding = pos_tag_embedding or None
        if feedforward is not None:
            output_dim = feedforward.get_output_dim()
        else:
            output_dim = span_extractor.get_output_dim()

        self.tag_projection_layer = TimeDistributed(
            Linear(output_dim, self.num_classes))

        representation_dim = text_field_embedder.get_output_dim()
        if pos_tag_embedding is not None:
            representation_dim += pos_tag_embedding.get_output_dim()
        check_dimensions_match(
            representation_dim,
            encoder.get_input_dim(),
            "representation dim (tokens + optional POS tags)",
            "encoder input dim",
        )
        check_dimensions_match(
            encoder.get_output_dim(),
            span_extractor.get_input_dim(),
            "encoder input dim",
            "span extractor input dim",
        )
        if feedforward is not None:
            check_dimensions_match(
                span_extractor.get_output_dim(),
                feedforward.get_input_dim(),
                "span extractor output dim",
                "feedforward input dim",
            )

        self.tag_accuracy = CategoricalAccuracy()

        if evalb_directory_path is not None:
            self._evalb_score = EvalbBracketingScorer(evalb_directory_path)
        else:
            self._evalb_score = None
        initializer(self)
Esempio n. 27
0
 def test_get_dimension_is_correct(self):
     feedforward = FeedForward(input_dim=10,
                               num_layers=1,
                               hidden_dims=10,
                               activations="linear")
     encoder = FeedForwardEncoder(feedforward)
     assert encoder.get_input_dim() == feedforward.get_input_dim()
     assert encoder.get_output_dim() == feedforward.get_output_dim()
Esempio n. 28
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 context_layer: Seq2SeqEncoder,
                 mention_feedforward: FeedForward,
                 antecedent_feedforward: FeedForward,
                 feature_size: int,
                 max_span_width: int,
                 spans_per_word: float,
                 max_antecedents: int,
                 lexical_dropout: float = 0.2,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(CoreferenceResolver, self).__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._context_layer = context_layer
        self._antecedent_feedforward = TimeDistributed(antecedent_feedforward)
        feedforward_scorer = torch.nn.Sequential(
                TimeDistributed(mention_feedforward),
                TimeDistributed(torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
        self._mention_pruner = SpanPruner(feedforward_scorer)
        self._antecedent_scorer = TimeDistributed(torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1))

        self._endpoint_span_extractor = EndpointSpanExtractor(context_layer.get_output_dim(),
                                                              combination="x,y",
                                                              num_width_embeddings=max_span_width,
                                                              span_width_embedding_dim=feature_size,
                                                              bucket_widths=False)
        self._attentive_span_extractor = SelfAttentiveSpanExtractor(input_dim=text_field_embedder.get_output_dim())

        # 10 possible distance buckets.
        self._num_distance_buckets = 10
        self._distance_embedding = Embedding(self._num_distance_buckets, feature_size)

        self._max_span_width = max_span_width
        self._spans_per_word = spans_per_word
        self._max_antecedents = max_antecedents

        self._mention_recall = MentionRecall()
        self._conll_coref_scores = ConllCorefScores()
        if lexical_dropout > 0:
            self._lexical_dropout = torch.nn.Dropout(p=lexical_dropout)
        else:
            self._lexical_dropout = lambda x: x
        initializer(self)
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 attention_function: SimilarityFunction,
                 num_start_types: int,
                 num_entity_types: int,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0,
                 unlinked_terminal_indices: List[int] = None) -> None:
        super(WikiTablesDecoderStep, self).__init__()
        self._mixture_feedforward = mixture_feedforward
        self._entity_type_embedding = Embedding(num_entity_types,
                                                action_embedding_dim)
        self._input_attention = Attention(attention_function)

        self._num_start_types = num_start_types
        self._start_type_predictor = Linear(encoder_output_dim,
                                            num_start_types)

        # Decoder output dim needs to be the same as the encoder output dim since we initialize the
        # hidden state of the decoder with the final hidden state of the encoder.
        output_dim = encoder_output_dim
        input_dim = output_dim
        # Our decoder input will be the concatenation of the decoder hidden state and the previous
        # action embedding, and we'll project that down to the decoder's `input_dim`, which we
        # arbitrarily set to be the same as `output_dim`.
        self._input_projection_layer = Linear(
            output_dim + action_embedding_dim, input_dim)
        # Before making a prediction, we'll compute an attention over the input given our updated
        # hidden state, and optionally a difference between the current checklist vector and its
        # target, if we are training to maximize coverage using a checklist. Then we concatenate
        # those with the decoder state and project to `action_embedding_dim` to make a prediction.
        if unlinked_terminal_indices is None:
            self._output_projection_layer = Linear(
                output_dim + encoder_output_dim, action_embedding_dim)
        else:
            unlinked_checklist_size = len(unlinked_terminal_indices)
            self._output_projection_layer = Linear(
                output_dim + encoder_output_dim + unlinked_checklist_size,
                action_embedding_dim)

        self._unlinked_terminal_indices = unlinked_terminal_indices
        # TODO(pradeep): Do not hardcode decoder cell type.
        self._decoder_cell = LSTMCell(input_dim, output_dim)

        if mixture_feedforward is not None:
            check_dimensions_match(output_dim,
                                   mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim",
                                   "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim",
                                   "dimension for scalar value")

        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
Esempio n. 30
0
    def __init__(self,
                 vocab: Vocabulary,
                 mention_feedforward: FeedForward,
                 antecedent_feedforward: FeedForward,
                 feature_size: int,
                 spans_per_word: float,
                 span_emb_dim: int,
                 max_antecedents: int,
                 coref_prop: int = 0,
                 coref_prop_dropout_f: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(), # TODO(dwadden add this).
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super(CorefResolver, self).__init__(vocab, regularizer)

        self._antecedent_feedforward = TimeDistributed(antecedent_feedforward)
        feedforward_scorer = torch.nn.Sequential(
            TimeDistributed(mention_feedforward),
            TimeDistributed(torch.nn.Linear(mention_feedforward.get_output_dim(), 1)))
        self._mention_pruner = Pruner(feedforward_scorer)
        self._antecedent_scorer = TimeDistributed(torch.nn.Linear(antecedent_feedforward.get_output_dim(), 1))

        # 10 possible distance buckets.
        self._num_distance_buckets = 10
        self._distance_embedding = Embedding(self._num_distance_buckets, feature_size)

        self._spans_per_word = spans_per_word
        self._max_antecedents = max_antecedents

        self._mention_recall = MentionRecall()
        self._conll_coref_scores = ConllCorefScores()

        self.coref_prop = coref_prop
        self._f_network = FeedForward(input_dim=2*span_emb_dim,
                                      num_layers=1,
                                      hidden_dims=span_emb_dim,
                                      activations=torch.nn.Sigmoid(),
                                      dropout=coref_prop_dropout_f)

        #self._f_network2 = FeedForward(input_dim=2*span_emb_dim,
        #                              num_layers=1,
        #                              hidden_dims=1,
        #                              activations=torch.nn.Sigmoid(),
        #                              dropout=coref_prop_dropout_f)
        self.antecedent_softmax = torch.nn.Softmax(dim=-1)
        initializer(self)
Esempio n. 31
0
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 label_namespace: str = "labels",
                 constraint_type: str = None,
                 feedforward: FeedForward = None,
                 include_start_end_transitions: bool = True,
                 dropout: float = None,
                 verbose_metrics: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self.label_namespace = label_namespace
        self.text_field_embedder = text_field_embedder
        self.num_tags = self.vocab.get_vocab_size(label_namespace)
        self.encoder = encoder
        self._verbose_metrics = verbose_metrics
        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
        else:
            self.dropout = None
        self._feedforward = feedforward

        if feedforward is not None:
            output_dim = feedforward.get_output_dim()
        else:
            output_dim = self.encoder.get_output_dim()
        self.tag_projection_layer = TimeDistributed(
            Linear(output_dim, self.num_tags))

        if constraint_type is not None:
            labels = self.vocab.get_index_to_token_vocabulary(label_namespace)
            constraints = allowed_transitions(constraint_type, labels)
        else:
            constraints = None

        self.crf = ConditionalRandomField(
            self.num_tags,
            constraints,
            include_start_end_transitions=include_start_end_transitions)

        self.span_metric = SpanBasedF1Measure(vocab,
                                              tag_namespace=label_namespace,
                                              label_encoding=constraint_type
                                              or "BIO")

        check_dimensions_match(text_field_embedder.get_output_dim(),
                               encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        if feedforward is not None:
            check_dimensions_match(encoder.get_output_dim(),
                                   feedforward.get_input_dim(),
                                   "encoder output dim",
                                   "feedforward input dim")
        initializer(self)
Esempio n. 32
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 similarity_function: SimilarityFunction,
                 projection_feedforward: FeedForward,
                 inference_encoder: Seq2SeqEncoder,
                 output_feedforward: FeedForward,
                 output_logit: FeedForward,
                 parser_model_path: str,
                 parser_cuda_device: int,
                 freeze_parser: bool,
                 dropout: float = 0.5,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._encoder = encoder

        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._projection_feedforward = projection_feedforward

        self._inference_encoder = inference_encoder

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None

        self._output_feedforward = output_feedforward
        self._output_logit = output_logit

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        check_dimensions_match(encoder.get_output_dim() * 4, projection_feedforward.get_input_dim(),
                               "encoder output dim", "projection feedforward input")
        check_dimensions_match(projection_feedforward.get_output_dim(), inference_encoder.get_input_dim(),
                               "proj feedforward output dim", "inference lstm input dim")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        self._parser = load_archive(parser_model_path,
                                    cuda_device=parser_cuda_device).model
        self._parser._head_sentinel.requires_grad = False
        for child in self._parser.children():
            for param in child.parameters():
                param.requires_grad = False
        if not freeze_parser:
            for param in self._parser.encoder.parameters():
                param.requires_grad = True

        initializer(self)
Esempio n. 33
0
    def __init__(self,
                 vocab: Vocabulary,
                 input_embedder: TextFieldEmbedder,
                 nli_projection_layer: FeedForward,
                 training_tasks: Any,
                 validation_tasks: Any,
                 langs_print_train: List[str] = ["en", "fr", "de", "ur", "sw"],
                 dropout: float = 0.0,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 feed_lang_ids: bool = True,
                 avg: bool = False) -> None:
        super(SimpleProjectionXlm, self).__init__(vocab, regularizer)

        self._avg = avg

        if type(training_tasks) == dict:
            self._training_tasks = list(training_tasks.keys())
        else:
            self._training_tasks = training_tasks

        if type(validation_tasks) == dict:
            self._validation_tasks = list(validation_tasks.keys())
        else:
            self._validation_tasks = validation_tasks

        self._input_embedder = input_embedder

        self._label_namespace = "labels"
        self._num_labels = vocab.get_vocab_size(
            namespace=self._label_namespace)

        self._nli_projection_layer = nli_projection_layer
        print(
            vocab.get_token_to_index_vocabulary(
                namespace=self._label_namespace))
        assert nli_projection_layer.get_output_dim() == self._num_labels

        self._dropout = torch.nn.Dropout(p=dropout)

        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self._nli_projection_layer)

        self._nli_per_lang_acc: Dict[str, CategoricalAccuracy] = dict()

        for taskname in self._validation_tasks:
            # this will hide some metrics from tqdm, but they will still be computed
            self._nli_per_lang_acc[taskname] = CategoricalAccuracy()
        self._nli_avg_acc = Average()

        self._langs_pring_train = langs_print_train or "en"
        if '*' in self._langs_pring_train:
            self._langs_pring_train = [t.split("")[-1] for t in training_tasks]

        self._feed_lang_ids = feed_lang_ids
Esempio n. 34
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 label_namespace: str = "labels",
                 constraint_type: str = None,
                 feedforward: FeedForward = None,
                 include_start_end_transitions: bool = True,
                 dropout: float = None,
                 verbose_metrics: bool = False,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self.label_namespace = label_namespace
        self.text_field_embedder = text_field_embedder
        self.num_tags = self.vocab.get_vocab_size(label_namespace)
        self.encoder = encoder
        self._verbose_metrics = verbose_metrics
        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
        else:
            self.dropout = None
        self._feedforward = feedforward

        if feedforward is not None:
            output_dim = feedforward.get_output_dim()
        else:
            output_dim = self.encoder.get_output_dim()
        self.tag_projection_layer = TimeDistributed(Linear(output_dim,
                                                           self.num_tags))

        if constraint_type is not None:
            labels = self.vocab.get_index_to_token_vocabulary(label_namespace)
            constraints = allowed_transitions(constraint_type, labels)
        else:
            constraints = None

        self.crf = ConditionalRandomField(
                self.num_tags, constraints,
                include_start_end_transitions=include_start_end_transitions
        )

        self.span_metric = SpanBasedF1Measure(vocab,
                                              tag_namespace=label_namespace,
                                              label_encoding=constraint_type or "BIO")


        check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        if feedforward is not None:
            check_dimensions_match(encoder.get_output_dim(), feedforward.get_input_dim(),
                                   "encoder output dim", "feedforward input dim")
        initializer(self)
Esempio n. 35
0
    def __init__(self,
                 encoder_output_dim: int,
                 action_embedding_dim: int,
                 input_attention: Attention,
                 num_start_types: int,
                 num_entity_types: int,
                 mixture_feedforward: FeedForward = None,
                 dropout: float = 0.0,
                 unlinked_terminal_indices: List[int] = None) -> None:
        super(WikiTablesDecoderStep, self).__init__()
        self._mixture_feedforward = mixture_feedforward
        self._entity_type_embedding = Embedding(num_entity_types, action_embedding_dim)
        self._input_attention = input_attention

        self._num_start_types = num_start_types
        self._start_type_predictor = Linear(encoder_output_dim, num_start_types)

        # Decoder output dim needs to be the same as the encoder output dim since we initialize the
        # hidden state of the decoder with the final hidden state of the encoder.
        output_dim = encoder_output_dim
        input_dim = output_dim
        # Our decoder input will be the concatenation of the decoder hidden state and the previous
        # action embedding, and we'll project that down to the decoder's `input_dim`, which we
        # arbitrarily set to be the same as `output_dim`.
        self._input_projection_layer = Linear(output_dim + action_embedding_dim, input_dim)
        # Before making a prediction, we'll compute an attention over the input given our updated
        # hidden state. Then we concatenate those with the decoder state and project to
        # `action_embedding_dim` to make a prediction.
        self._output_projection_layer = Linear(output_dim + encoder_output_dim, action_embedding_dim)
        if unlinked_terminal_indices is not None:
            # This means we are using coverage to train the parser.
            # These factors are used to add the embeddings of yet to be produced actions to the
            # predicted embedding, and to boost the action logits of yet to be produced linked
            # actions, respectively.
            self._unlinked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))
            self._linked_checklist_multiplier = Parameter(torch.FloatTensor([1.0]))

        self._unlinked_terminal_indices = unlinked_terminal_indices
        # TODO(pradeep): Do not hardcode decoder cell type.
        self._decoder_cell = LSTMCell(input_dim, output_dim)

        if mixture_feedforward is not None:
            check_dimensions_match(output_dim, mixture_feedforward.get_input_dim(),
                                   "hidden state embedding dim", "mixture feedforward input dim")
            check_dimensions_match(mixture_feedforward.get_output_dim(), 1,
                                   "mixture feedforward output dim", "dimension for scalar value")

        if dropout > 0:
            self._dropout = torch.nn.Dropout(p=dropout)
        else:
            self._dropout = lambda x: x
    def __init__(self,
                 vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 span_extractor: SpanExtractor,
                 encoder: Seq2SeqEncoder,
                 feedforward_layer: FeedForward = None,
                 pos_tag_embedding: Embedding = None,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None,
                 evalb_directory_path: str = None) -> None:
        super(SpanConstituencyParser, self).__init__(vocab, regularizer)

        self.text_field_embedder = text_field_embedder
        self.span_extractor = span_extractor
        self.num_classes = self.vocab.get_vocab_size("labels")
        self.encoder = encoder
        self.feedforward_layer = TimeDistributed(feedforward_layer) if feedforward_layer else None
        self.pos_tag_embedding = pos_tag_embedding or None
        if feedforward_layer is not None:
            output_dim = feedforward_layer.get_output_dim()
        else:
            output_dim = span_extractor.get_output_dim()

        self.tag_projection_layer = TimeDistributed(Linear(output_dim, self.num_classes))

        representation_dim = text_field_embedder.get_output_dim()
        if pos_tag_embedding is not None:
            representation_dim += pos_tag_embedding.get_output_dim()
        check_dimensions_match(representation_dim,
                               encoder.get_input_dim(),
                               "representation dim (tokens + optional POS tags)",
                               "encoder input dim")
        check_dimensions_match(encoder.get_output_dim(),
                               span_extractor.get_input_dim(),
                               "encoder input dim",
                               "span extractor input dim")
        if feedforward_layer is not None:
            check_dimensions_match(span_extractor.get_output_dim(),
                                   feedforward_layer.get_input_dim(),
                                   "span extractor output dim",
                                   "feedforward input dim")

        self.tag_accuracy = CategoricalAccuracy()

        if evalb_directory_path is not None:
            self._evalb_score = EvalbBracketingScorer(evalb_directory_path)
        else:
            self._evalb_score = None
        initializer(self)
Esempio n. 37
0
    def __init__(self, vocab: Vocabulary,
                 text_field_embedder: TextFieldEmbedder,
                 encoder: Seq2SeqEncoder,
                 similarity_function: SimilarityFunction,
                 projection_feedforward: FeedForward,
                 inference_encoder: Seq2SeqEncoder,
                 output_feedforward: FeedForward,
                 output_logit: FeedForward,
                 dropout: float = 0.5,
                 initializer: InitializerApplicator = InitializerApplicator(),
                 regularizer: Optional[RegularizerApplicator] = None) -> None:
        super().__init__(vocab, regularizer)

        self._text_field_embedder = text_field_embedder
        self._encoder = encoder

        self._matrix_attention = LegacyMatrixAttention(similarity_function)
        self._projection_feedforward = projection_feedforward

        self._inference_encoder = inference_encoder

        if dropout:
            self.dropout = torch.nn.Dropout(dropout)
            self.rnn_input_dropout = InputVariationalDropout(dropout)
        else:
            self.dropout = None
            self.rnn_input_dropout = None

        self._output_feedforward = output_feedforward
        self._output_logit = output_logit

        self._num_labels = vocab.get_vocab_size(namespace="labels")

        check_dimensions_match(text_field_embedder.get_output_dim(), encoder.get_input_dim(),
                               "text field embedding dim", "encoder input dim")
        check_dimensions_match(encoder.get_output_dim() * 4, projection_feedforward.get_input_dim(),
                               "encoder output dim", "projection feedforward input")
        check_dimensions_match(projection_feedforward.get_output_dim(), inference_encoder.get_input_dim(),
                               "proj feedforward output dim", "inference lstm input dim")

        self._accuracy = CategoricalAccuracy()
        self._loss = torch.nn.CrossEntropyLoss()

        initializer(self)