Esempio n. 1
0
 def _forward(self, batch: dict, for_training: bool) -> dict:
     tensor_batch = arrays_to_variables(batch, self._cuda_device, for_training=for_training)
     return self._model.forward(**tensor_batch)
Esempio n. 2
0
 def test_forward_pass_runs_correctly(self):
     training_arrays = arrays_to_variables(self.dataset.as_array_dict())
     output_dict = self.model.forward(**training_arrays)
     assert_almost_equal(numpy.sum(output_dict["label_probs"][0].data.numpy(), -1), 1, decimal=6)
Esempio n. 3
0
    def ensure_model_can_train_save_and_load(self, param_file: str):
        save_dir = os.path.join(self.TEST_DIR, "save_and_load_test")
        archive_file = os.path.join(save_dir, "model.tar.gz")
        model = train_model_from_file(param_file, save_dir)
        loaded_model = load_archive(archive_file).model
        state_keys = model.state_dict().keys()
        loaded_state_keys = loaded_model.state_dict().keys()
        assert state_keys == loaded_state_keys
        # First we make sure that the state dict (the parameters) are the same for both models.
        for key in state_keys:
            assert_allclose(model.state_dict()[key].numpy(),
                            loaded_model.state_dict()[key].numpy(),
                            err_msg=key)
        params = Params.from_file(self.param_file)
        reader = DatasetReader.from_params(params['dataset_reader'])
        iterator = DataIterator.from_params(params['iterator'])

        # We'll check that even if we index the dataset with each model separately, we still get
        # the same result out.
        model_dataset = reader.read(params['validation_data_path'])
        model_dataset.index_instances(model.vocab)
        model_batch_arrays = next(iterator(model_dataset, shuffle=False))
        model_batch = arrays_to_variables(model_batch_arrays,
                                          for_training=False)
        loaded_dataset = reader.read(params['validation_data_path'])
        loaded_dataset.index_instances(loaded_model.vocab)
        loaded_batch_arrays = next(iterator(loaded_dataset, shuffle=False))
        loaded_batch = arrays_to_variables(loaded_batch_arrays,
                                           for_training=False)

        # The datasets themselves should be identical.
        for key in model_batch.keys():
            field = model_batch[key]
            if isinstance(field, dict):
                for subfield in field:
                    self.assert_fields_equal(model_batch[key][subfield],
                                             loaded_batch[key][subfield],
                                             tolerance=1e-6,
                                             name=key + '.' + subfield)
            else:
                self.assert_fields_equal(model_batch[key], loaded_batch[key],
                                         1e-6, key)

        # Set eval mode, to turn off things like dropout, then get predictions.
        model.eval()
        loaded_model.eval()
        model_predictions = model.forward(**model_batch)
        loaded_model_predictions = loaded_model.forward(**loaded_batch)

        # Check loaded model's loss exists and we can compute gradients, for continuing training.
        loaded_model_loss = loaded_model_predictions["loss"]
        assert loaded_model_loss is not None
        loaded_model_loss.backward()

        # Both outputs should have the same keys and the values for these keys should be close.
        for key in model_predictions.keys():
            self.assert_fields_equal(model_predictions[key],
                                     loaded_model_predictions[key],
                                     tolerance=1e-4,
                                     name=key)

        return model, loaded_model
Esempio n. 4
0
 def test_forward_pass_runs_correctly(self):
     training_arrays = self.dataset.as_array_dict()
     _ = self.model.forward(**arrays_to_variables(training_arrays))
 def test_forward_pass_runs_correctly(self):
     training_arrays = arrays_to_variables(self.dataset.as_array_dict())
     output_dict = self.model.forward(**training_arrays)
     class_probs = output_dict['class_probabilities'][0].data.numpy()
     numpy.testing.assert_almost_equal(numpy.sum(class_probs, -1),
                                       numpy.ones(class_probs.shape[0]))