def forward(
            self,  # type: ignore
            question: Dict[str, torch.LongTensor],
            table: Dict[str, torch.LongTensor],
            world: List[QuarelWorld],
            actions: List[List[ProductionRule]],
            entity_bits: torch.Tensor = None,
            denotation_target: torch.Tensor = None,
            target_action_sequences: torch.LongTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        # pylint: disable=unused-argument
        """
        In this method we encode the table entities, link them to words in the question, then
        encode the question. Then we set up the initial state for the decoder, and pass that
        state off to either a DecoderTrainer, if we're training, or a BeamSearch for inference,
        if we're not.

        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
           The output of ``TextField.as_array()`` applied on the question ``TextField``. This will
           be passed through a ``TextFieldEmbedder`` and then through an encoder.
        table : ``Dict[str, torch.LongTensor]``
            The output of ``KnowledgeGraphField.as_array()`` applied on the table
            ``KnowledgeGraphField``.  This output is similar to a ``TextField`` output, where each
            entity in the table is treated as a "token", and we will use a ``TextFieldEmbedder`` to
            get embeddings for each entity.
        world : ``List[QuarelWorld]``
            We use a ``MetadataField`` to get the ``World`` for each input instance.  Because of
            how ``MetadataField`` works, this gets passed to us as a ``List[QuarelWorld]``,
        actions : ``List[List[ProductionRule]]``
            A list of all possible actions for each ``World`` in the batch, indexed into a
            ``ProductionRule`` using a ``ProductionRuleField``.  We will embed all of these
            and use the embeddings to determine which action to take at each timestep in the
            decoder.
        entity_bits : ``torch.Tensor``, optional (default=None)
            Tensor encoding bits for the world entities.
        denotation_target : ``torch.Tensor``, optional (default=None)
            If model's field ``denotation_only`` is True, this is the tensor target denotation.
        target_action_sequences : torch.Tensor, optional (default=None)
           A list of possibly valid action sequences, where each action is an index into the list
           of possible actions.  This tensor has shape ``(batch_size, num_action_sequences,
           sequence_length)``.
        metadata : List[Dict[str, Any]], optional (default=None).
            A dictionary of metadata for each batch element which has keys:
                question_tokens : ``List[str]``, optional.
                    The original string tokens in the question.
                world_extractions : ``nltk.Tree``, optional.
                    Extracted worlds from the question.
                answer_index : ``List[str]``, optional.
                    Index of the correct answer.
        """

        table_text = table['text']

        self._debug_count -= 1

        # (batch_size, question_length, embedding_dim)
        embedded_question = self._question_embedder(question)
        question_mask = util.get_text_field_mask(question).float()
        num_question_tokens = embedded_question.size(1)

        # (batch_size, num_entities, num_entity_tokens, embedding_dim)
        embedded_table = self._question_embedder(table_text,
                                                 num_wrapping_dims=1)

        batch_size, num_entities, num_entity_tokens, _ = embedded_table.size()

        # entity_types: one-hot tensor with shape (batch_size, num_entities, num_types)
        # entity_type_dict: Dict[int, int], mapping flattened_entity_index -> type_index
        # These encode the same information, but for efficiency reasons later it's nice
        # to have one version as a tensor and one that's accessible on the cpu.
        entity_types, entity_type_dict = self._get_type_vector(
            world, num_entities, embedded_table)

        if self._use_entities:

            if self._entity_similarity_mode == "dot_product":
                # Compute entity and question word cosine similarity. Need to add a small value to
                # to the table norm since there are padding values which cause a divide by 0.
                embedded_table = embedded_table / (
                    embedded_table.norm(dim=-1, keepdim=True) + 1e-13)
                embedded_question = embedded_question / (
                    embedded_question.norm(dim=-1, keepdim=True) + 1e-13)
                question_entity_similarity = torch.bmm(
                    embedded_table.view(batch_size,
                                        num_entities * num_entity_tokens,
                                        self._embedding_dim),
                    torch.transpose(embedded_question, 1, 2))

                question_entity_similarity = question_entity_similarity.view(
                    batch_size, num_entities, num_entity_tokens,
                    num_question_tokens)

                # (batch_size, num_entities, num_question_tokens)
                question_entity_similarity_max_score, _ = torch.max(
                    question_entity_similarity, 2)

                linking_scores = question_entity_similarity_max_score
            elif self._entity_similarity_mode == "weighted_dot_product":
                embedded_table = embedded_table / (
                    embedded_table.norm(dim=-1, keepdim=True) + 1e-13)
                embedded_question = embedded_question / (
                    embedded_question.norm(dim=-1, keepdim=True) + 1e-13)
                eqe = embedded_question.unsqueeze(1).expand(
                    -1, num_entities * num_entity_tokens, -1, -1)
                ete = embedded_table.view(batch_size,
                                          num_entities * num_entity_tokens,
                                          self._embedding_dim)
                ete = ete.unsqueeze(2).expand(-1, -1, num_question_tokens, -1)
                product = torch.mul(eqe, ete)
                product = product.view(
                    batch_size,
                    num_question_tokens * num_entities * num_entity_tokens,
                    self._embedding_dim)
                question_entity_similarity = self._entity_similarity_layer(
                    product)
                question_entity_similarity = question_entity_similarity.view(
                    batch_size, num_entities, num_entity_tokens,
                    num_question_tokens)

                # (batch_size, num_entities, num_question_tokens)
                question_entity_similarity_max_score, _ = torch.max(
                    question_entity_similarity, 2)
                linking_scores = question_entity_similarity_max_score

            # (batch_size, num_entities, num_question_tokens, num_features)
            linking_features = table['linking']

            if self._linking_params is not None:
                feature_scores = self._linking_params(
                    linking_features).squeeze(3)
                linking_scores = linking_scores + feature_scores

            # (batch_size, num_question_tokens, num_entities)
            linking_probabilities = self._get_linking_probabilities(
                world, linking_scores.transpose(1, 2), question_mask,
                entity_type_dict)
            encoder_input = embedded_question
        else:
            if entity_bits is not None and not self._entity_bits_output:
                encoder_input = torch.cat([embedded_question, entity_bits], 2)
            else:
                encoder_input = embedded_question

            # Fake linking_scores added for downstream code to not object
            linking_scores = question_mask.clone().fill_(0).unsqueeze(1)
            linking_probabilities = None

        # (batch_size, question_length, encoder_output_dim)
        encoder_outputs = self._dropout(
            self._encoder(encoder_input, question_mask))

        if self._entity_bits_output and entity_bits is not None:
            encoder_outputs = torch.cat([encoder_outputs, entity_bits], 2)

        # This will be our initial hidden state and memory cell for the decoder LSTM.
        final_encoder_output = util.get_final_encoder_states(
            encoder_outputs, question_mask, self._encoder.is_bidirectional())
        # For predicting a categorical denotation directly
        if self._denotation_only:
            denotation_logits = self._denotation_classifier(
                final_encoder_output)
            loss = torch.nn.functional.cross_entropy(
                denotation_logits, denotation_target.view(-1))
            self._denotation_accuracy_cat(denotation_logits, denotation_target)
            return {"loss": loss}

        memory_cell = encoder_outputs.new_zeros(batch_size,
                                                self._encoder_output_dim)

        _, num_entities, num_question_tokens = linking_scores.size()

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        # To make grouping states together in the decoder easier, we convert the batch dimension in
        # all of our tensors into an outer list.  For instance, the encoder outputs have shape
        # `(batch_size, question_length, encoder_output_dim)`.  We need to convert this into a list
        # of `batch_size` tensors, each of shape `(question_length, encoder_output_dim)`.  Then we
        # won't have to do any index selects, or anything, we'll just do some `torch.cat()`s.
        encoder_output_list = [encoder_outputs[i] for i in range(batch_size)]
        question_mask_list = [question_mask[i] for i in range(batch_size)]
        initial_rnn_state = []

        for i in range(batch_size):
            initial_rnn_state.append(
                RnnStatelet(final_encoder_output[i], memory_cell[i],
                            self._first_action_embedding,
                            self._first_attended_question, encoder_output_list,
                            question_mask_list))

        initial_grammar_state = [
            self._create_grammar_state(world[i], actions[i], linking_scores[i],
                                       entity_types[i])
            for i in range(batch_size)
        ]

        initial_score = initial_rnn_state[0].hidden_state.new_zeros(batch_size)
        initial_score_list = [initial_score[i] for i in range(batch_size)]
        initial_state = GrammarBasedState(
            batch_indices=list(range(batch_size)),
            action_history=[[] for _ in range(batch_size)],
            score=initial_score_list,
            rnn_state=initial_rnn_state,
            grammar_state=initial_grammar_state,
            possible_actions=actions,
            extras=None,
            debug_info=None)

        if self.training:
            outputs = self._decoder_trainer.decode(
                initial_state, self._decoder_step,
                (target_action_sequences, target_mask))
            return outputs

        else:
            action_mapping = {}
            for batch_index, batch_actions in enumerate(actions):
                for action_index, action in enumerate(batch_actions):
                    action_mapping[(batch_index, action_index)] = action[0]
            outputs = {'action_mapping': action_mapping}
            if target_action_sequences is not None:
                outputs['loss'] = self._decoder_trainer.decode(
                    initial_state, self._decoder_step,
                    (target_action_sequences, target_mask))['loss']

            num_steps = self._max_decoding_steps
            # This tells the state to start keeping track of debug info, which we'll pass along in
            # our output dictionary.
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._beam_search.search(
                num_steps,
                initial_state,
                self._decoder_step,
                keep_final_unfinished_states=False)
            outputs['best_action_sequence'] = []
            outputs['debug_info'] = []
            outputs['entities'] = []
            if self._linking_params is not None:
                outputs['linking_scores'] = linking_scores
                outputs['feature_scores'] = feature_scores
                outputs['linking_features'] = linking_features
            if self._use_entities:
                outputs['linking_probabilities'] = linking_probabilities
            if entity_bits is not None:
                outputs['entity_bits'] = entity_bits
            # outputs['similarity_scores'] = question_entity_similarity_max_score
            outputs['logical_form'] = []
            outputs['denotation_acc'] = []
            outputs['score'] = []
            outputs['parse_acc'] = []
            outputs['answer_index'] = []
            if metadata is not None:
                outputs['question_tokens'] = []
                outputs['world_extractions'] = []
            for i in range(batch_size):
                if metadata is not None:
                    outputs['question_tokens'].append(metadata[i].get(
                        'question_tokens', []))
                if metadata is not None:
                    outputs['world_extractions'].append(metadata[i].get(
                        'world_extractions', {}))
                outputs['entities'].append(world[i].table_graph.entities)
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = best_final_states[i][
                        0].action_history[0]
                    sequence_in_targets = 0
                    if target_action_sequences is not None:
                        targets = target_action_sequences[i].data
                        sequence_in_targets = self._action_history_match(
                            best_action_indices, targets)
                        self._action_sequence_accuracy(sequence_in_targets)
                    action_strings = [
                        action_mapping[(i, action_index)]
                        for action_index in best_action_indices
                    ]
                    try:
                        self._has_logical_form(1.0)
                        logical_form = world[i].get_logical_form(
                            action_strings, add_var_function=False)
                    except ParsingError:
                        self._has_logical_form(0.0)
                        logical_form = 'Error producing logical form'
                    denotation_accuracy = 0.0
                    predicted_answer_index = world[i].execute(logical_form)
                    if metadata is not None and 'answer_index' in metadata[i]:
                        answer_index = metadata[i]['answer_index']
                        denotation_accuracy = self._denotation_match(
                            predicted_answer_index, answer_index)
                        self._denotation_accuracy(denotation_accuracy)
                    score = math.exp(
                        best_final_states[i][0].score[0].data.cpu().item())
                    outputs['answer_index'].append(predicted_answer_index)
                    outputs['score'].append(score)
                    outputs['parse_acc'].append(sequence_in_targets)
                    outputs['best_action_sequence'].append(action_strings)
                    outputs['logical_form'].append(logical_form)
                    outputs['denotation_acc'].append(denotation_accuracy)
                    outputs['debug_info'].append(
                        best_final_states[i][0].debug_info[0])  # type: ignore
                else:
                    outputs['parse_acc'].append(0)
                    outputs['logical_form'].append('')
                    outputs['denotation_acc'].append(0)
                    outputs['score'].append(0)
                    outputs['answer_index'].append(-1)
                    outputs['best_action_sequence'].append([])
                    outputs['debug_info'].append([])
                    self._has_logical_form(0.0)
            return outputs
Esempio n. 2
0
    def forward(
            self,  # type: ignore
            sentence: Dict[str, torch.LongTensor],
            worlds: List[List[NlvrLanguage]],
            actions: List[List[ProductionRule]],
            identifier: List[str] = None,
            target_action_sequences: torch.LongTensor = None,
            labels: torch.LongTensor = None,
            metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        Decoder logic for producing type constrained target sequences, trained to maximize marginal
        likelihod over a set of approximate logical forms.
        """
        batch_size = len(worlds)

        initial_rnn_state = self._get_initial_rnn_state(sentence)
        initial_score_list = [
            next(iter(sentence.values())).new_zeros(1, dtype=torch.float)
            for i in range(batch_size)
        ]
        label_strings = self._get_label_strings(
            labels) if labels is not None else None
        # TODO (pradeep): Assuming all worlds give the same set of valid actions.
        initial_grammar_state = [
            self._create_grammar_state(worlds[i][0], actions[i])
            for i in range(batch_size)
        ]

        initial_state = GrammarBasedState(
            batch_indices=list(range(batch_size)),
            action_history=[[] for _ in range(batch_size)],
            score=initial_score_list,
            rnn_state=initial_rnn_state,
            grammar_state=initial_grammar_state,
            possible_actions=actions,
            extras=label_strings)

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        outputs: Dict[str, torch.Tensor] = {}
        if identifier is not None:
            outputs["identifier"] = identifier
        if target_action_sequences is not None:
            outputs = self._decoder_trainer.decode(
                initial_state, self._decoder_step,
                (target_action_sequences, target_mask))
        if not self.training:
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._decoder_beam_search.search(
                self._max_decoding_steps,
                initial_state,
                self._decoder_step,
                keep_final_unfinished_states=False)
            best_action_sequences: Dict[int, List[List[int]]] = {}
            for i in range(batch_size):
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = [
                        best_final_states[i][0].action_history[0]
                    ]
                    best_action_sequences[i] = best_action_indices
            batch_action_strings = self._get_action_strings(
                actions, best_action_sequences)
            batch_denotations = self._get_denotations(batch_action_strings,
                                                      worlds)
            if target_action_sequences is not None:
                self._update_metrics(action_strings=batch_action_strings,
                                     worlds=worlds,
                                     label_strings=label_strings)
            else:
                if metadata is not None:
                    outputs["sentence_tokens"] = [
                        x["sentence_tokens"] for x in metadata
                    ]
                outputs['debug_info'] = []
                for i in range(batch_size):
                    outputs['debug_info'].append(
                        best_final_states[i][0].debug_info[0])  # type: ignore
                outputs["best_action_strings"] = batch_action_strings
                outputs["denotations"] = batch_denotations
                action_mapping = {}
                for batch_index, batch_actions in enumerate(actions):
                    for action_index, action in enumerate(batch_actions):
                        action_mapping[(batch_index, action_index)] = action[0]
                outputs['action_mapping'] = action_mapping
        return outputs
    def forward(self,  # type: ignore
                sentence: Dict[str, torch.LongTensor],
                worlds: List[List[NlvrWorld]],
                actions: List[List[ProductionRule]],
                identifier: List[str] = None,
                target_action_sequences: torch.LongTensor = None,
                labels: torch.LongTensor = None,
                metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        Decoder logic for producing type constrained target sequences, trained to maximize marginal
        likelihod over a set of approximate logical forms.
        """
        batch_size = len(worlds)

        initial_rnn_state = self._get_initial_rnn_state(sentence)
        initial_score_list = [next(iter(sentence.values())).new_zeros(1, dtype=torch.float)
                              for i in range(batch_size)]
        label_strings = self._get_label_strings(labels) if labels is not None else None
        # TODO (pradeep): Assuming all worlds give the same set of valid actions.
        initial_grammar_state = [self._create_grammar_state(worlds[i][0], actions[i]) for i in
                                 range(batch_size)]

        initial_state = GrammarBasedState(batch_indices=list(range(batch_size)),
                                          action_history=[[] for _ in range(batch_size)],
                                          score=initial_score_list,
                                          rnn_state=initial_rnn_state,
                                          grammar_state=initial_grammar_state,
                                          possible_actions=actions,
                                          extras=label_strings)

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        outputs: Dict[str, torch.Tensor] = {}
        if identifier is not None:
            outputs["identifier"] = identifier
        if target_action_sequences is not None:
            outputs = self._decoder_trainer.decode(initial_state,
                                                   self._decoder_step,
                                                   (target_action_sequences, target_mask))
        if not self.training:
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._decoder_beam_search.search(self._max_decoding_steps,
                                                                 initial_state,
                                                                 self._decoder_step,
                                                                 keep_final_unfinished_states=False)
            best_action_sequences: Dict[int, List[List[int]]] = {}
            for i in range(batch_size):
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = [best_final_states[i][0].action_history[0]]
                    best_action_sequences[i] = best_action_indices
            batch_action_strings = self._get_action_strings(actions, best_action_sequences)
            batch_denotations = self._get_denotations(batch_action_strings, worlds)
            if target_action_sequences is not None:
                self._update_metrics(action_strings=batch_action_strings,
                                     worlds=worlds,
                                     label_strings=label_strings)
            else:
                if metadata is not None:
                    outputs["sentence_tokens"] = [x["sentence_tokens"] for x in metadata]
                outputs['debug_info'] = []
                for i in range(batch_size):
                    outputs['debug_info'].append(best_final_states[i][0].debug_info[0])  # type: ignore
                outputs["best_action_strings"] = batch_action_strings
                outputs["denotations"] = batch_denotations
                action_mapping = {}
                for batch_index, batch_actions in enumerate(actions):
                    for action_index, action in enumerate(batch_actions):
                        action_mapping[(batch_index, action_index)] = action[0]
                outputs['action_mapping'] = action_mapping
        return outputs
    def forward(self,  # type: ignore
                question: Dict[str, torch.LongTensor],
                table: Dict[str, torch.LongTensor],
                world: List[WikiTablesWorld],
                actions: List[List[ProductionRule]],
                example_lisp_string: List[str] = None,
                target_action_sequences: torch.LongTensor = None,
                metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        In this method we encode the table entities, link them to words in the question, then
        encode the question. Then we set up the initial state for the decoder, and pass that
        state off to either a DecoderTrainer, if we're training, or a BeamSearch for inference,
        if we're not.

        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
           The output of ``TextField.as_array()`` applied on the question ``TextField``. This will
           be passed through a ``TextFieldEmbedder`` and then through an encoder.
        table : ``Dict[str, torch.LongTensor]``
            The output of ``KnowledgeGraphField.as_array()`` applied on the table
            ``KnowledgeGraphField``.  This output is similar to a ``TextField`` output, where each
            entity in the table is treated as a "token", and we will use a ``TextFieldEmbedder`` to
            get embeddings for each entity.
        world : ``List[WikiTablesWorld]``
            We use a ``MetadataField`` to get the ``World`` for each input instance.  Because of
            how ``MetadataField`` works, this gets passed to us as a ``List[WikiTablesWorld]``,
        actions : ``List[List[ProductionRule]]``
            A list of all possible actions for each ``World`` in the batch, indexed into a
            ``ProductionRule`` using a ``ProductionRuleField``.  We will embed all of these
            and use the embeddings to determine which action to take at each timestep in the
            decoder.
        example_lisp_string : ``List[str]``, optional (default = None)
            The example (lisp-formatted) string corresponding to the given input.  This comes
            directly from the ``.examples`` file provided with the dataset.  We pass this to SEMPRE
            when evaluating denotation accuracy; it is otherwise unused.
        target_action_sequences : torch.Tensor, optional (default = None)
           A list of possibly valid action sequences, where each action is an index into the list
           of possible actions.  This tensor has shape ``(batch_size, num_action_sequences,
           sequence_length)``.
        metadata : ``List[Dict[str, Any]]``, optional, (default = None)
            Metadata containing the original tokenized question within a 'question_tokens' key.
        """
        outputs: Dict[str, Any] = {}
        rnn_state, grammar_state = self._get_initial_rnn_and_grammar_state(question,
                                                                           table,
                                                                           world,
                                                                           actions,
                                                                           outputs)
        batch_size = len(rnn_state)
        initial_score = rnn_state[0].hidden_state.new_zeros(batch_size)
        initial_score_list = [initial_score[i] for i in range(batch_size)]
        initial_state = GrammarBasedState(batch_indices=list(range(batch_size)),  # type: ignore
                                          action_history=[[] for _ in range(batch_size)],
                                          score=initial_score_list,
                                          rnn_state=rnn_state,
                                          grammar_state=grammar_state,
                                          possible_actions=actions,
                                          extras=example_lisp_string,
                                          debug_info=None)

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        if self.training:
            return self._decoder_trainer.decode(initial_state,
                                                self._decoder_step,
                                                (target_action_sequences, target_mask))
        else:
            if target_action_sequences is not None:
                outputs['loss'] = self._decoder_trainer.decode(initial_state,
                                                               self._decoder_step,
                                                               (target_action_sequences, target_mask))['loss']
            num_steps = self._max_decoding_steps
            # This tells the state to start keeping track of debug info, which we'll pass along in
            # our output dictionary.
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._beam_search.search(num_steps,
                                                         initial_state,
                                                         self._decoder_step,
                                                         keep_final_unfinished_states=False)
            for i in range(batch_size):
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = best_final_states[i][0].action_history[0]
                    if target_action_sequences is not None:
                        # Use a Tensor, not a Variable, to avoid a memory leak.
                        targets = target_action_sequences[i].data
                        sequence_in_targets = 0
                        sequence_in_targets = self._action_history_match(best_action_indices, targets)
                        self._action_sequence_accuracy(sequence_in_targets)

            self._compute_validation_outputs(actions,
                                             best_final_states,
                                             world,
                                             example_lisp_string,
                                             metadata,
                                             outputs)

            return outputs
    def forward(self,  # type: ignore
                question: Dict[str, torch.LongTensor],
                table: Dict[str, torch.LongTensor],
                world: List[WikiTablesVariableFreeWorld],
                actions: List[List[ProductionRuleArray]],
                target_values: List[List[str]] = None,
                target_action_sequences: torch.LongTensor = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        In this method we encode the table entities, link them to words in the question, then
        encode the question. Then we set up the initial state for the decoder, and pass that
        state off to either a DecoderTrainer, if we're training, or a BeamSearch for inference,
        if we're not.

        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
           The output of ``TextField.as_array()`` applied on the question ``TextField``. This will
           be passed through a ``TextFieldEmbedder`` and then through an encoder.
        table : ``Dict[str, torch.LongTensor]``
            The output of ``KnowledgeGraphField.as_array()`` applied on the table
            ``KnowledgeGraphField``.  This output is similar to a ``TextField`` output, where each
            entity in the table is treated as a "token", and we will use a ``TextFieldEmbedder`` to
            get embeddings for each entity.
        world : ``List[WikiTablesWorld]``
            We use a ``MetadataField`` to get the ``World`` for each input instance.  Because of
            how ``MetadataField`` works, this gets passed to us as a ``List[WikiTablesWorld]``,
        actions : ``List[List[ProductionRuleArray]]``
            A list of all possible actions for each ``World`` in the batch, indexed into a
            ``ProductionRuleArray`` using a ``ProductionRuleField``.  We will embed all of these
            and use the embeddings to determine which action to take at each timestep in the
            decoder.
        target_values : ``List[List[str]]``, optional (default = None)
            For each instance, a list of target values taken from the example lisp string. We pass
            this list to the evaluator along with logical forms to compute denotation accuracy.
        target_action_sequences : torch.Tensor, optional (default = None)
           A list of possibly valid action sequences, where each action is an index into the list
           of possible actions.  This tensor has shape ``(batch_size, num_action_sequences,
           sequence_length)``.
        """
        outputs: Dict[str, Any] = {}
        rnn_state, grammar_state = self._get_initial_rnn_and_grammar_state(question,
                                                                           table,
                                                                           world,
                                                                           actions,
                                                                           outputs)
        batch_size = len(rnn_state)
        initial_score = rnn_state[0].hidden_state.new_zeros(batch_size)
        initial_score_list = [initial_score[i] for i in range(batch_size)]
        initial_state = GrammarBasedState(batch_indices=list(range(batch_size)),  # type: ignore
                                          action_history=[[] for _ in range(batch_size)],
                                          score=initial_score_list,
                                          rnn_state=rnn_state,
                                          grammar_state=grammar_state,
                                          possible_actions=actions,
                                          extras=target_values,
                                          debug_info=None)

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        if self.training:
            return self._decoder_trainer.decode(initial_state,
                                                self._decoder_step,
                                                (target_action_sequences, target_mask))
        else:
            if target_action_sequences is not None:
                outputs['loss'] = self._decoder_trainer.decode(initial_state,
                                                               self._decoder_step,
                                                               (target_action_sequences, target_mask))['loss']
            num_steps = self._max_decoding_steps
            # This tells the state to start keeping track of debug info, which we'll pass along in
            # our output dictionary.
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._beam_search.search(num_steps,
                                                         initial_state,
                                                         self._decoder_step,
                                                         keep_final_unfinished_states=False)
            for i in range(batch_size):
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = best_final_states[i][0].action_history[0]
                    if target_action_sequences is not None:
                        # Use a Tensor, not a Variable, to avoid a memory leak.
                        targets = target_action_sequences[i].data
                        sequence_in_targets = 0
                        sequence_in_targets = self._action_history_match(best_action_indices, targets)
                        self._action_sequence_accuracy(sequence_in_targets)

            metadata = None
            self._compute_validation_outputs(actions,
                                             best_final_states,
                                             world,
                                             target_values,
                                             metadata,
                                             outputs)

            return outputs
    def forward(
            self,
            question: Dict[str, torch.LongTensor],
            question_predicates,
            # labelled_results,
            world: List[LCQuADLanguage],
            actions: List[List[ProductionRule]],
            question_entities=None,
            target_action_sequences: torch.LongTensor = None,
            labels: torch.LongTensor = None,
            logical_forms=None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        """
        Decoder logic for producing type constrained target sequences, trained to maximize marginal
        likelihood over a set of approximate logical forms.
        """
        assert target_action_sequences is not None

        batch_size = question['tokens'].size()[0]
        # Remove the trailing dimension (from ListField[ListField[IndexField]]).
        # assert target_action_sequences.dim() == 3
        target_action_sequences = target_action_sequences.squeeze(-1)
        target_mask = target_action_sequences != self._action_padding_index

        # if self._kg_embedder:
        #     embedded_entities = self._kg_embedder(question_entities, input_type="entity")
        #     embedded_type_entities = self._kg_embedder(question_type_entities, input_type="entity")
        #     embedded_predicates = self._kg_embedder(question_predicates, input_type="predicate")

        initial_rnn_state = self._get_initial_rnn_state(question)
        initial_score_list = [
            next(iter(question.values())).new_zeros(1, dtype=torch.float)
            for _ in range(batch_size)
        ]

        # TODO (pradeep): Assuming all worlds give the same set of valid actions.
        initial_grammar_statelet = [
            self._create_grammar_state(world[i], actions[i])
            for i in range(batch_size)
        ]
        initial_state = GrammarBasedState(
            batch_indices=list(range(batch_size)),
            action_history=[[] for _ in range(batch_size)],
            score=initial_score_list,
            rnn_state=initial_rnn_state,
            grammar_state=initial_grammar_statelet,
            possible_actions=actions)

        outputs = self._decoder_trainer.decode(
            initial_state, self._decoder_step,
            (target_action_sequences, target_mask))

        if not self.training:
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._decoder_beam_search.search(
                self._max_decoding_steps,
                initial_state,
                self._decoder_step,
                keep_final_unfinished_states=False)
            best_action_sequences: Dict[int, List[List[int]]] = {}
            for i in range(batch_size):
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = [
                        best_final_states[i][0].action_history[0]
                    ]
                    best_action_sequences[i] = best_action_indices
            batch_action_strings = self._get_action_strings(
                actions, best_action_sequences)

            # self._update_metrics(action_strings=batch_action_strings,
            #                     worlds=world,
            #                     labelled_results=labelled_results)

            debug_infos = []
            for i in range(batch_size):
                debug_infos.append(best_final_states[i][0].debug_info[0])

            action_mapping = {}
            for batch_index, batch_actions in enumerate(actions):
                for action_index, action in enumerate(batch_actions):
                    action_mapping[(batch_index, action_index)] = action[0]

            self._update_seq_metrics(action_strings=batch_action_strings,
                                     worlds=world,
                                     gold_logical_forms=logical_forms,
                                     train=self.training)

            outputs["predicted queries"] = batch_action_strings

            best_actions = batch_action_strings
            batch_action_info = []
            for batch_index, (predicted_actions, debug_info) in enumerate(
                    zip(best_actions, debug_infos)):
                instance_action_info = []
                for predicted_action, action_debug_info in zip(
                        predicted_actions[0], debug_info):
                    action_info = {}
                    action_info['predicted_action'] = predicted_action
                    considered_actions = action_debug_info[
                        'considered_actions']
                    probabilities = action_debug_info['probabilities']
                    actions = []
                    for action, probability in zip(considered_actions,
                                                   probabilities):
                        if action != -1:
                            actions.append(
                                (action_mapping[(batch_index, action)],
                                 probability))
                    actions.sort()
                    considered_actions, probabilities = zip(*actions)
                    action_info['considered_actions'] = considered_actions
                    action_info['action_probabilities'] = probabilities
                    action_info['question_attention'] = action_debug_info.get(
                        'question_attention', [])
                    instance_action_info.append(action_info)
                batch_action_info.append(instance_action_info)
            outputs["predicted_actions"] = batch_action_info

        return outputs
    def forward(self,  # type: ignore
                question: Dict[str, torch.LongTensor],
                table: Dict[str, torch.LongTensor],
                world: List[QuarelWorld],
                actions: List[List[ProductionRule]],
                entity_bits: torch.Tensor = None,
                denotation_target: torch.Tensor = None,
                target_action_sequences: torch.LongTensor = None,
                metadata: List[Dict[str, Any]] = None) -> Dict[str, torch.Tensor]:
        # pylint: disable=arguments-differ
        # pylint: disable=unused-argument
        """
        In this method we encode the table entities, link them to words in the question, then
        encode the question. Then we set up the initial state for the decoder, and pass that
        state off to either a DecoderTrainer, if we're training, or a BeamSearch for inference,
        if we're not.

        Parameters
        ----------
        question : Dict[str, torch.LongTensor]
           The output of ``TextField.as_array()`` applied on the question ``TextField``. This will
           be passed through a ``TextFieldEmbedder`` and then through an encoder.
        table : ``Dict[str, torch.LongTensor]``
            The output of ``KnowledgeGraphField.as_array()`` applied on the table
            ``KnowledgeGraphField``.  This output is similar to a ``TextField`` output, where each
            entity in the table is treated as a "token", and we will use a ``TextFieldEmbedder`` to
            get embeddings for each entity.
        world : ``List[QuarelWorld]``
            We use a ``MetadataField`` to get the ``World`` for each input instance.  Because of
            how ``MetadataField`` works, this gets passed to us as a ``List[QuarelWorld]``,
        actions : ``List[List[ProductionRule]]``
            A list of all possible actions for each ``World`` in the batch, indexed into a
            ``ProductionRule`` using a ``ProductionRuleField``.  We will embed all of these
            and use the embeddings to determine which action to take at each timestep in the
            decoder.
        target_action_sequences : torch.Tensor, optional (default=None)
           A list of possibly valid action sequences, where each action is an index into the list
           of possible actions.  This tensor has shape ``(batch_size, num_action_sequences,
           sequence_length)``.
        """

        table_text = table['text']

        self._debug_count -= 1

        # (batch_size, question_length, embedding_dim)
        embedded_question = self._question_embedder(question)
        question_mask = util.get_text_field_mask(question).float()
        num_question_tokens = embedded_question.size(1)

        # (batch_size, num_entities, num_entity_tokens, embedding_dim)
        embedded_table = self._question_embedder(table_text, num_wrapping_dims=1)

        batch_size, num_entities, num_entity_tokens, _ = embedded_table.size()

        # entity_types: one-hot tensor with shape (batch_size, num_entities, num_types)
        # entity_type_dict: Dict[int, int], mapping flattened_entity_index -> type_index
        # These encode the same information, but for efficiency reasons later it's nice
        # to have one version as a tensor and one that's accessible on the cpu.
        entity_types, entity_type_dict = self._get_type_vector(world, num_entities, embedded_table)

        if self._use_entities:

            if self._entity_similarity_mode == "dot_product":
                # Compute entity and question word cosine similarity. Need to add a small value to
                # to the table norm since there are padding values which cause a divide by 0.
                embedded_table = embedded_table / (embedded_table.norm(dim=-1, keepdim=True) + 1e-13)
                embedded_question = embedded_question / (embedded_question.norm(dim=-1, keepdim=True) + 1e-13)
                question_entity_similarity = torch.bmm(embedded_table.view(batch_size,
                                                                           num_entities * num_entity_tokens,
                                                                           self._embedding_dim),
                                                       torch.transpose(embedded_question, 1, 2))

                question_entity_similarity = question_entity_similarity.view(batch_size,
                                                                             num_entities,
                                                                             num_entity_tokens,
                                                                             num_question_tokens)

                # (batch_size, num_entities, num_question_tokens)
                question_entity_similarity_max_score, _ = torch.max(question_entity_similarity, 2)

                linking_scores = question_entity_similarity_max_score
            elif self._entity_similarity_mode == "weighted_dot_product":
                embedded_table = embedded_table / (embedded_table.norm(dim=-1, keepdim=True) + 1e-13)
                embedded_question = embedded_question / (embedded_question.norm(dim=-1, keepdim=True) + 1e-13)
                eqe = embedded_question.unsqueeze(1).expand(-1, num_entities*num_entity_tokens, -1, -1)
                ete = embedded_table.view(batch_size, num_entities*num_entity_tokens, self._embedding_dim)
                ete = ete.unsqueeze(2).expand(-1, -1, num_question_tokens, -1)
                product = torch.mul(eqe, ete)
                product = product.view(batch_size,
                                       num_question_tokens*num_entities*num_entity_tokens,
                                       self._embedding_dim)
                question_entity_similarity = self._entity_similarity_layer(product)
                question_entity_similarity = question_entity_similarity.view(batch_size,
                                                                             num_entities,
                                                                             num_entity_tokens,
                                                                             num_question_tokens)

                # (batch_size, num_entities, num_question_tokens)
                question_entity_similarity_max_score, _ = torch.max(question_entity_similarity, 2)
                linking_scores = question_entity_similarity_max_score

            # (batch_size, num_entities, num_question_tokens, num_features)
            linking_features = table['linking']

            if self._linking_params is not None:
                feature_scores = self._linking_params(linking_features).squeeze(3)
                linking_scores = linking_scores + feature_scores

            # (batch_size, num_question_tokens, num_entities)
            linking_probabilities = self._get_linking_probabilities(world, linking_scores.transpose(1, 2),
                                                                    question_mask, entity_type_dict)
            encoder_input = embedded_question
        else:
            if entity_bits is not None and not self._entity_bits_output:
                encoder_input = torch.cat([embedded_question, entity_bits], 2)
            else:
                encoder_input = embedded_question

            # Fake linking_scores added for downstream code to not object
            linking_scores = question_mask.clone().fill_(0).unsqueeze(1)
            linking_probabilities = None

        # (batch_size, question_length, encoder_output_dim)
        encoder_outputs = self._dropout(self._encoder(encoder_input, question_mask))

        if self._entity_bits_output and entity_bits is not None:
            encoder_outputs = torch.cat([encoder_outputs, entity_bits], 2)

        # This will be our initial hidden state and memory cell for the decoder LSTM.
        final_encoder_output = util.get_final_encoder_states(encoder_outputs,
                                                             question_mask,
                                                             self._encoder.is_bidirectional())
        # For predicting a categorical denotation directly
        if self._denotation_only:
            denotation_logits = self._denotation_classifier(final_encoder_output)
            loss = torch.nn.functional.cross_entropy(denotation_logits, denotation_target.view(-1))
            self._denotation_accuracy_cat(denotation_logits, denotation_target)
            return {"loss": loss}

        memory_cell = encoder_outputs.new_zeros(batch_size, self._encoder_output_dim)

        _, num_entities, num_question_tokens = linking_scores.size()

        if target_action_sequences is not None:
            # Remove the trailing dimension (from ListField[ListField[IndexField]]).
            target_action_sequences = target_action_sequences.squeeze(-1)
            target_mask = target_action_sequences != self._action_padding_index
        else:
            target_mask = None

        # To make grouping states together in the decoder easier, we convert the batch dimension in
        # all of our tensors into an outer list.  For instance, the encoder outputs have shape
        # `(batch_size, question_length, encoder_output_dim)`.  We need to convert this into a list
        # of `batch_size` tensors, each of shape `(question_length, encoder_output_dim)`.  Then we
        # won't have to do any index selects, or anything, we'll just do some `torch.cat()`s.
        encoder_output_list = [encoder_outputs[i] for i in range(batch_size)]
        question_mask_list = [question_mask[i] for i in range(batch_size)]
        initial_rnn_state = []

        for i in range(batch_size):
            initial_rnn_state.append(RnnStatelet(final_encoder_output[i],
                                                 memory_cell[i],
                                                 self._first_action_embedding,
                                                 self._first_attended_question,
                                                 encoder_output_list,
                                                 question_mask_list))

        initial_grammar_state = [self._create_grammar_state(world[i], actions[i],
                                                            linking_scores[i], entity_types[i])
                                 for i in range(batch_size)]

        initial_score = initial_rnn_state[0].hidden_state.new_zeros(batch_size)
        initial_score_list = [initial_score[i] for i in range(batch_size)]
        initial_state = GrammarBasedState(batch_indices=list(range(batch_size)),
                                          action_history=[[] for _ in range(batch_size)],
                                          score=initial_score_list,
                                          rnn_state=initial_rnn_state,
                                          grammar_state=initial_grammar_state,
                                          possible_actions=actions,
                                          extras=None,
                                          debug_info=None)

        if self.training:
            outputs = self._decoder_trainer.decode(initial_state,
                                                   self._decoder_step,
                                                   (target_action_sequences, target_mask))
            return outputs

        else:
            action_mapping = {}
            for batch_index, batch_actions in enumerate(actions):
                for action_index, action in enumerate(batch_actions):
                    action_mapping[(batch_index, action_index)] = action[0]
            outputs = {'action_mapping': action_mapping}
            if target_action_sequences is not None:
                outputs['loss'] = self._decoder_trainer.decode(initial_state,
                                                               self._decoder_step,
                                                               (target_action_sequences, target_mask))['loss']

            num_steps = self._max_decoding_steps
            # This tells the state to start keeping track of debug info, which we'll pass along in
            # our output dictionary.
            initial_state.debug_info = [[] for _ in range(batch_size)]
            best_final_states = self._beam_search.search(num_steps,
                                                         initial_state,
                                                         self._decoder_step,
                                                         keep_final_unfinished_states=False)
            outputs['best_action_sequence'] = []
            outputs['debug_info'] = []
            outputs['entities'] = []
            if self._linking_params is not None:
                outputs['linking_scores'] = linking_scores
                outputs['feature_scores'] = feature_scores
                outputs['linking_features'] = linking_features
            if self._use_entities:
                outputs['linking_probabilities'] = linking_probabilities
            if entity_bits is not None:
                outputs['entity_bits'] = entity_bits
            # outputs['similarity_scores'] = question_entity_similarity_max_score
            outputs['logical_form'] = []
            outputs['denotation_acc'] = []
            outputs['score'] = []
            outputs['parse_acc'] = []
            outputs['answer_index'] = []
            if metadata is not None:
                outputs['question_tokens'] = []
                outputs['world_extractions'] = []
            for i in range(batch_size):
                if metadata is not None:
                    outputs['question_tokens'].append(metadata[i].get('question_tokens', []))
                if metadata is not None:
                    outputs['world_extractions'].append(metadata[i].get('world_extractions', {}))
                outputs['entities'].append(world[i].table_graph.entities)
                # Decoding may not have terminated with any completed logical forms, if `num_steps`
                # isn't long enough (or if the model is not trained enough and gets into an
                # infinite action loop).
                if i in best_final_states:
                    best_action_indices = best_final_states[i][0].action_history[0]
                    sequence_in_targets = 0
                    if target_action_sequences is not None:
                        targets = target_action_sequences[i].data
                        sequence_in_targets = self._action_history_match(best_action_indices, targets)
                        self._action_sequence_accuracy(sequence_in_targets)
                    action_strings = [action_mapping[(i, action_index)] for action_index in best_action_indices]
                    try:
                        self._has_logical_form(1.0)
                        logical_form = world[i].get_logical_form(action_strings, add_var_function=False)
                    except ParsingError:
                        self._has_logical_form(0.0)
                        logical_form = 'Error producing logical form'
                    denotation_accuracy = 0.0
                    predicted_answer_index = world[i].execute(logical_form)
                    if metadata is not None and 'answer_index' in metadata[i]:
                        answer_index = metadata[i]['answer_index']
                        denotation_accuracy = self._denotation_match(predicted_answer_index, answer_index)
                        self._denotation_accuracy(denotation_accuracy)
                    score = math.exp(best_final_states[i][0].score[0].data.cpu().item())
                    outputs['answer_index'].append(predicted_answer_index)
                    outputs['score'].append(score)
                    outputs['parse_acc'].append(sequence_in_targets)
                    outputs['best_action_sequence'].append(action_strings)
                    outputs['logical_form'].append(logical_form)
                    outputs['denotation_acc'].append(denotation_accuracy)
                    outputs['debug_info'].append(best_final_states[i][0].debug_info[0])  # type: ignore
                else:
                    outputs['parse_acc'].append(0)
                    outputs['logical_form'].append('')
                    outputs['denotation_acc'].append(0)
                    outputs['score'].append(0)
                    outputs['answer_index'].append(-1)
                    outputs['best_action_sequence'].append([])
                    outputs['debug_info'].append([])
                    self._has_logical_form(0.0)
            return outputs