def recommend(self, users=None, k=100, exclude_known=True): """Give toplist recommendations for users. Parameters ---------- users : list List of users to give recommendation for. k : int Size of toplists exclude_known : bool Whether to exclude (user,item) pairs in the train dataset from the toplists. Returns ------- pandas.DataFrame DataFrame of recommendations, with columns **user**, **item** and **rank**. """ rs.collect() dummy_model_filter = rs.DummyModelFilter() dummy_model_filter.set_items(self.items) dummy_model_filter.set_users(self.users) pred_creator = rs.PredictionCreatorPersonalized( top_k=k, lookback=1 if exclude_known else 0) pred_creator.set_filter(dummy_model_filter) pred_creator.set_train_matrix(self.matrix) pred_creator.set_model(self.model) ranking_computer = rs.OfflineRankingComputer(top_k=k) ranking_computer.set_items(self.items) if users is None: ranking_computer.set_users(self.users) else: ranking_computer.set_users( rs.VectorInt(pd.Series(users).unique().tolist())) ranking_computer.set_toplist_creator(pred_creator) created_objects = rs.get_and_clean() # rs.initialize_all(created_objects) for i in created_objects: rs.run_self_test(i) preds = ranking_computer.compute() preds_df = pd.DataFrame({ 'user': preds.users, 'item': preds.items, 'rank': preds.ranks }).sort_values(['user', 'rank'])[['user', 'item', 'rank']] return preds_df
def fit(self, X, y=None, columns={}): """Fit the model to a dataset. Parameters ---------- X : pandas.DataFrame The input data, must contain the columns **user** and **item**. May contain the **score** column as well. y : pandas.Series or list The target values. If not set (and X doesn't contain the score column), it is assumed to be constant 1 (implicit recommendation). columns : dict Optionally the mapping of the input DataFrame's columns' names to the expected ones. """ rs.collect() data = X if y is None: if 'score' not in X: data['score'] = np.ones(len(X)) else: if 'score' in X: raise ValueError("y and score column both provided") else: data['score'] = y recommender_data = DataframeData(data, columns=columns) matrix = recommender_data.get_full_matrix() users = rs.VectorInt([]) items = rs.VectorInt([]) recommender_data.get_users_into(users) recommender_data.get_items_into(items) (model, learner) = self._fit(recommender_data, users, items, matrix) created_objects = rs.get_and_clean() rs.initialize_all(created_objects) for i in created_objects: rs.run_self_test(i) self.check_unused_parameters() learner.fit(recommender_data) self.objects = created_objects self.model = model self.items = items self.users = users self.matrix = matrix self.recommender_data = recommender_data