def tests_presimulation(self): self.model.getFixedParameterNames() combos = itertools.product([(10, 5), (5, 10), ()], repeat=3) cases = dict() for icombo, combo in enumerate(combos): cases[f'{icombo}'] = { 'fixedParameters': combo[0], 'fixedParametersPreequilibration': combo[1], 'fixedParametersPresimulation': combo[2], } for case in cases: with self.subTest(**cases[case]): for fp in cases[case]: setattr(self.edata[0], fp, cases[case][fp]) df_edata = amici.getDataObservablesAsDataFrame( self.model, self.edata) edata_reconstructed = amici.getEdataFromDataFrame( self.model, df_edata) for fp in [ 'fixedParameters', 'fixedParametersPreequilibration', 'fixedParametersPresimulation' ]: if fp != 'fixedParameters' or cases[case][fp] is not (): self.assertTupleEqual( getattr(self.edata[0], fp), getattr(edata_reconstructed[0], fp), ) self.assertTupleEqual( cases[case][fp], getattr(edata_reconstructed[0], fp), ) self.assertTupleEqual( getattr(self.edata[0], fp), cases[case][fp], ) else: self.assertTupleEqual( self.model.getFixedParameters(), getattr(edata_reconstructed[0], fp), ) self.assertTupleEqual( self.model.getFixedParameters(), getattr(edata_reconstructed[0], fp), ) self.assertTupleEqual( getattr(self.edata[0], fp), cases[case][fp], )
def test_steadystate_simulation(model_steadystate_module): model = model_steadystate_module.getModel() model.setTimepoints(np.linspace(0, 60, 60)) solver = model.getSolver() solver.setSensitivityOrder(amici.SensitivityOrder.first) rdata = amici.runAmiciSimulation(model, solver) edata = [amici.ExpData(rdata, 1, 0)] rdata = amici.runAmiciSimulations(model, solver, edata) # check roundtripping of DataFrame conversion df_edata = amici.getDataObservablesAsDataFrame(model, edata) edata_reconstructed = amici.getEdataFromDataFrame(model, df_edata) assert np.isclose( amici.ExpDataView(edata[0])['observedData'], amici.ExpDataView(edata_reconstructed[0])['observedData']).all() assert np.isclose( amici.ExpDataView(edata[0])['observedDataStdDev'], amici.ExpDataView(edata_reconstructed[0])['observedDataStdDev']).all() if len(edata[0].fixedParameters): assert list(edata[0].fixedParameters) \ == list(edata_reconstructed[0].fixedParameters) else: assert list(model.getFixedParameters()) \ == list(edata_reconstructed[0].fixedParameters) assert list(edata[0].fixedParametersPreequilibration) == \ list(edata_reconstructed[0].fixedParametersPreequilibration) df_state = amici.getSimulationStatesAsDataFrame(model, edata, rdata) assert np.isclose(rdata[0]['x'], df_state[list(model.getStateIds())].values).all() df_obs = amici.getSimulationObservablesAsDataFrame(model, edata, rdata) assert np.isclose(rdata[0]['y'], df_obs[list(model.getObservableIds())].values).all() amici.getResidualsAsDataFrame(model, edata, rdata) solver.setRelativeTolerance(1e-12) solver.setAbsoluteTolerance(1e-12) check_derivatives(model, solver, edata[0], assert_fun, atol=1e-3, rtol=1e-3, epsilon=1e-4) # Run some additional tests which need a working Model, # but don't need precomputed expectations. _test_set_parameters_by_dict(model_steadystate_module)
def test_pandas_import_export(sbml_example_presimulation_module, case): """TestCase class for testing csv import using pandas""" # setup model = sbml_example_presimulation_module.getModel() model.setTimepoints(np.linspace(0, 60, 61)) solver = model.getSolver() rdata = amici.runAmiciSimulation(model, solver) edata = [amici.ExpData(rdata, 0.01, 0)] # test copy constructor _ = amici.ExpData(edata[0]) for fp in case: setattr(edata[0], fp, case[fp]) df_edata = amici.getDataObservablesAsDataFrame(model, edata) edata_reconstructed = amici.getEdataFromDataFrame(model, df_edata) for fp in [ 'fixedParameters', 'fixedParametersPreequilibration', 'fixedParametersPresimulation' ]: if fp != 'fixedParameters' or case[fp] != (): assert getattr(edata[0], fp) == getattr(edata_reconstructed[0], fp) assert case[fp] == getattr(edata_reconstructed[0], fp) else: assert model.getFixedParameters() \ == getattr(edata_reconstructed[0], fp) assert model.getFixedParameters() == \ getattr(edata_reconstructed[0], fp) assert getattr(edata[0], fp) == case[fp]
def test_steadystate_scaled(self): """ Test SBML import and simulation from AMICI python interface """ def assert_fun(x): return self.assertTrue(x) sbmlFile = os.path.join(os.path.dirname(__file__), '..', 'python', 'examples', 'example_steadystate', 'model_steadystate_scaled.xml') sbmlImporter = amici.SbmlImporter(sbmlFile) observables = amici.assignmentRules2observables( sbmlImporter.sbml, filter_function=lambda variable: variable.getId().startswith('observable_') and not variable.getId().endswith('_sigma') ) outdir = 'test_model_steadystate_scaled' sbmlImporter.sbml2amici('test_model_steadystate_scaled', outdir, observables=observables, constantParameters=['k0'], sigmas={'observable_x1withsigma': 'observable_x1withsigma_sigma'}) sys.path.insert(0, outdir) import test_model_steadystate_scaled as modelModule model = modelModule.getModel() model.setTimepoints(np.linspace(0, 60, 60)) solver = model.getSolver() solver.setSensitivityOrder(amici.SensitivityOrder_first) rdata = amici.runAmiciSimulation(model, solver) edata = [amici.ExpData(rdata, 1, 0)] rdata = amici.runAmiciSimulations(model, solver, edata) # check roundtripping of DataFrame conversion df_edata = amici.getDataObservablesAsDataFrame(model, edata) edata_reconstructed = amici.getEdataFromDataFrame(model, df_edata) self.assertTrue( np.isclose( amici.ExpDataView(edata[0]) ['observedData'], amici.ExpDataView(edata_reconstructed[0]) ['observedData'], ).all() ) self.assertTrue( np.isclose( amici.ExpDataView(edata[0]) ['observedDataStdDev'], amici.ExpDataView(edata_reconstructed[0]) ['observedDataStdDev'], ).all() ) if len(edata[0].fixedParameters): self.assertListEqual( list(edata[0].fixedParameters), list(edata_reconstructed[0].fixedParameters), ) else: self.assertListEqual( list(model.getFixedParameters()), list(edata_reconstructed[0].fixedParameters), ) self.assertListEqual( list(edata[0].fixedParametersPreequilibration), list(edata_reconstructed[0].fixedParametersPreequilibration), ) df_state = amici.getSimulationStatesAsDataFrame(model, edata, rdata) self.assertTrue( np.isclose( rdata[0]['x'], df_state[list(model.getStateIds())].values ).all() ) df_obs = amici.getSimulationObservablesAsDataFrame(model, edata, rdata) self.assertTrue( np.isclose( rdata[0]['y'], df_obs[list(model.getObservableIds())].values ).all() ) amici.getResidualsAsDataFrame(model, edata, rdata) solver.setRelativeTolerance(1e-12) solver.setAbsoluteTolerance(1e-12) check_derivatives(model, solver, edata[0], assert_fun, atol=1e-3, rtol=1e-3, epsilon=1e-4)
def test_steadystate_scaled(self): ''' Test SBML import and simulation from AMICI python interface ''' sbmlFile = os.path.join(os.path.dirname(__file__), '..', 'python', 'examples', 'example_steadystate', 'model_steadystate_scaled.xml') sbmlImporter = amici.SbmlImporter(sbmlFile) observables = amici.assignmentRules2observables( sbmlImporter.sbml, filter_function=lambda variable: variable.getId().startswith( 'observable_') and not variable.getId().endswith('_sigma')) outdir = 'test_model_steadystate_scaled' sbmlImporter.sbml2amici( 'test_model_steadystate_scaled', outdir, observables=observables, constantParameters=['k0'], sigmas={'observable_x1withsigma': 'observable_x1withsigma_sigma'}) sys.path.insert(0, outdir) import test_model_steadystate_scaled as modelModule model = modelModule.getModel() model.setTimepoints(amici.DoubleVector(np.linspace(0, 60, 60))) solver = model.getSolver() rdata = amici.runAmiciSimulation(model, solver) edata = [amici.ExpData(rdata, 0.01, 0)] rdata = amici.runAmiciSimulations(model, solver, edata) # check roundtripping of DataFrame conversion df_edata = amici.getDataObservablesAsDataFrame(model, edata) edata_reconstructed = amici.getEdataFromDataFrame(model, df_edata) self.assertTrue( np.isclose( amici.edataToNumPyArrays(edata[0])['observedData'], amici.edataToNumPyArrays( edata_reconstructed[0])['observedData'], ).all()) self.assertTrue( np.isclose( amici.edataToNumPyArrays(edata[0])['observedDataStdDev'], amici.edataToNumPyArrays( edata_reconstructed[0])['observedDataStdDev'], ).all()) if edata[0].fixedParameters.size(): self.assertListEqual( list(edata[0].fixedParameters), list(edata_reconstructed[0].fixedParameters), ) else: self.assertListEqual( list(model.getFixedParameters()), list(edata_reconstructed[0].fixedParameters), ) self.assertListEqual( list(edata[0].fixedParametersPreequilibration), list(edata_reconstructed[0].fixedParametersPreequilibration), ) df_state = amici.getSimulationStatesAsDataFrame(model, edata, rdata) self.assertTrue( np.isclose(rdata[0]['x'], df_state[list(model.getStateIds())].values).all()) df_obs = amici.getSimulationObservablesAsDataFrame(model, edata, rdata) self.assertTrue( np.isclose(rdata[0]['y'], df_obs[list(model.getObservableIds())].values).all()) amici.getResidualsAsDataFrame(model, edata, rdata)