Esempio n. 1
0
  def lattice(data, funcG, funcW, n): #the only option - we need Gkw and Wqnu for self energy in the next iteration
    #data.get_Gkw(funcG) #gets Gkw from G0 and Sigma
    def func(var, data):
      mu = var[0]
      dt = data[0]
      #print "func call! mu: ", mu, " n: ",dt.ns['up']
      n= data[1] 
      dt.mus['up'] = mu
      dt.mus['down'] = dt.mus['up']
      dt.get_Gkw_direct(funcG) #gets Gkw from w, mu, epsilon and Sigma and X
      dt.get_G_loc() #gets G_loc from Gkw
      dt.get_n_from_G_loc()     
      #print "funcvalue: ",-abs(n - dt.ns['up'])  
      return 1.0-abs(n - dt.ns['up'])  
    if not MASTER_SLAVE_ARCHITECTURE: mpi.barrier()
    varbest, funcvalue, iterations = amoeba(var=[data.mus['up']],
                                              scale=[0.01],
                                              func=func, 
                                              data = [data, n],
                                              itmax=30,
                                              ftolerance=1e-2,
                                              xtolerance=1e-2)
    if mpi.is_master_node():
      print "mu best: ", varbest
      print "-abs(diff n - data.n): ", funcvalue
      print "iterations used: ", iterations

    data.get_Gtildekw() #gets Gkw-G_loc

    data.get_Wqnu_from_func(funcW) #gets Wqnu from P and J 
    data.get_W_loc() #gets W_loc from Wqnu
    data.get_Wtildeqnu() #gets Wqnu-W_loc, 
Esempio n. 2
0
def search_for_mu(get_mu, set_mu, get_n, n, ph_symmetry, accepted_mu_range=[-20.0,20.0]):  
  print "getters: search_for_mu:  n: ",n,", ph_symmetry",ph_symmetry, "accepted mu_range: ",accepted_mu_range

  if (n is None) or ((n==0.5) and ph_symmetry):
    print "no mu search to be performed! it is your duty to set the chemical potential to U/2. mu =",get_mu()
    print 'n on the lattice : ', get_n()
  else:
    def func(var, data=None):
      mu = var[0]        
      set_mu(mu)
      actual_n = get_n()
      val = 1.0-abs(n - actual_n)  
      print "amoeba func call: mu: %.2f desired n: %.2f actual n: %.2f val = "%(mu,n,actual_n),val
      if val != val: return -1e+6
      else: return val

    print "about to do mu search:"

    guesses = [get_mu(), 0.0, -0.1, -0.3, -0.4, -0.5, -0.7, 0.3, 0.5, 0.7]
    found = False  
    for l in range(len(guesses)):
      varbest, funcvalue, iterations = amoeba(var=[guesses[l]],
                                            scale=[0.01],
                                            func=func, 
                                            data = None,
                                            itmax=30,
                                            ftolerance=1e-2,
                                            xtolerance=1e-2,
                                            known_max = 1.0,
                                            known_max_accr = 5e-5)
      if (varbest[0]>accepted_mu_range[0] and varbest[0]<accepted_mu_range[1]) and (abs(funcvalue-1.0)<1e-2): #change the bounds for large doping
        found = True 
        func(varbest)
        break 
      if l+1 == len(guesses):
        print "mu search FAILED: doing a scan..."

        mu_grid = numpy.linspace(-1.0,0.3,50)
        func_values = [func(var=[mu]) for mu in mu_grid]
        print "func_values: "
        for i in range(len(mu_grid)):
          print "mu: ",mu_grid[i], " 1-abs(n-n): ", func_values[i]
        mui_max = numpy.argmax(func_values)
        print "using mu: ", mu_grid[mui_max]
        set_mu(mu_grid[mui_max])  
        get_n()
           
    if found:
      print "guesses tried: ", l  
      print "mu best: ", varbest
      print "1-abs(diff n - data.n): ", funcvalue
      print "iterations used: ", iterations
Esempio n. 3
0
    f.write("%endblock PAO.Basis\n")
    f.close()

    atoms = ListOfAtoms([
        Atom('Ga', (0.0, 0.0, 0.0), magmom=0),
        Atom('Ga', (2.0, 0.0, 0.0), magmom=0)
    ])

    a = Siesta(executable="/Users/ag/bin/siesta-xlf")

    a.SetOption("%include", "base.fdf")
    energy = a.run(atoms)

    print rcs, rcp, energy
    return -energy


URLbase = "http://fisica.ehu.es/ag/siesta-psffiles/"

# create a work subdirectory
orig_dir = os.getcwd()
dir = "simplex_work"
if os.path.isdir(dir):  # does dir exist?
    shutil.rmtree(dir)  # yes, remove old directory
os.mkdir(dir)  # make dir directory
os.chdir(dir)  # move to dir

urllib.urlretrieve(URLbase + "Ga.lda.psf", "Ga.psf")

print amoeba.amoeba([4.25, 4.25], [2.5, 2.5], afunc, xtolerance=5.0e-2)
Esempio n. 4
0
def main():
	# global variables
	global screen, pd, master, w, h, dcBright
	
	## Graphics Initialization
	w = 1200
	h = 250
	screen = pygame.display.set_mode((w, h))
	pygame.display.set_caption("Amoebas")
	pd = pygame.draw
	drawmode = 'stick'
	dcBright = randColorBright()
	
	master = cake.c_master(friction=.92, gravity_glob=[0., 200.], slip=.8)
	
	amoebas = []
	
	amoeba0 = amoeba.amoeba(master, [100, h-80])
	amoeba0.circle_res = 14
	amoeba0.circle_radius = 50.
	amoeba0.node_mass = 1.0
	amoeba0.treading = 3
	amoeba0.treadk = 100.
	amoeba0.tread_damp = .5
	amoeba0.musclek = 100
	amoeba0.muscle_period = .2*2*pi
	amoeba0.muscle_amp = 50.
	amoeba0.muscle_damp = .5
	
	amoeba1 = amoeba.amoeba(master, [100, h-80])
	amoeba1.circle_res = 20
	amoeba1.circle_radius = 50.
	amoeba1.node_mass = 1.0
	amoeba1.treading = 2
	amoeba1.treadk = 200.
	amoeba1.tread_damp = .5
	amoeba1.musclek = 400
	amoeba1.muscle_period = 1.2
	amoeba1.muscle_amp = 60.
	amoeba1.muscle_damp = .9
	
	amoeba2 = amoeba.amoeba(master, [150, h-70])
	amoeba2.circle_res = 14
	amoeba2.circle_radius = 20.
	amoeba2.node_mass = 1.
	amoeba2.treading = 2
	amoeba2.treadk = 100.
	amoeba2.tread_damp = .9
	amoeba2.musclek = 400.
	amoeba2.muscle_period = .7
	amoeba2.muscle_amp = 30.
	amoeba2.muscle_damp = amoeba2.tread_damp
	
	amoeba3 = amoeba.amoeba(master, [100, h-80])
	amoeba3.circle_res = 8
	amoeba3.circle_radius = 50.
	amoeba3.node_mass = 1.0
	amoeba3.treading = 2
	amoeba3.treadk = 200.
	amoeba3.tread_damp = .5
	amoeba3.musclek = 400
	amoeba3.muscle_period = .2*2*pi
	amoeba3.muscle_amp = 60.
	amoeba3.muscle_damp = .9
	
	amoeba4 = amoeba.amoeba(master, [100, h-80])
	amoeba4.circle_res = 10
	amoeba4.circle_radius = 50.
	amoeba4.node_mass = 1.0
	amoeba4.treading = 2
	amoeba4.treadk = 200.
	amoeba4.tread_damp = .5
	amoeba4.musclek = 400
	amoeba4.muscle_period = .18*2*pi
	amoeba4.muscle_amp = 90.
	amoeba4.muscle_damp = .9
	
	amoeba5 = amoeba.amoeba(master, [100, h-180])
	amoeba5.circle_res = 16
	amoeba5.circle_radius = 30.
	amoeba5.node_mass = 1.0
	amoeba5.treading = 2
	amoeba5.treadk = 600.
	amoeba5.tread_damp = .5
	amoeba5.musclek = 40
	amoeba5.muscle_period = .18*2*pi
	amoeba5.muscle_amp = 20.
	amoeba5.muscle_damp = .2
	
	amoebas.append(amoeba5)
	amoebas.append(amoeba0)
	amoebas.append(amoeba1)
	amoebas.append(amoeba2)
	amoebas.append(amoeba3)
	amoebas.append(amoeba4)
	
	activeID = 0
	amoebas[activeID].assemble()
	
	# terrain
	ground_wall = master.make_wall([(-200, h-20), (w+200, h-10)])
	slope_wall = master.make_wall([(200, h-5), (400, h-50)])
	master.make_wall([(400, h-50), (500, h)])
	
	timescale = 1
	timestep = time.time()
	time_last = time.time()
	time_start = time.time()
	last_render = 0.
	lagged = False
	frame = -1
	while True:
		frame += 1
		
		## Event handler
		for event in pygame.event.get():
			if event.type == pygame.QUIT:
				pygame.quit(); sys.exit();
			elif event.type == pygame.KEYDOWN:
				if event.key == pygame.K_ESCAPE or event.unicode == 'q':
					pygame.quit(); sys.exit();
				elif event.key == pygame.K_v:
					dcBright = randColorBright()
					if drawmode == 'stick':
						drawmode = 'solid'
					elif drawmode == 'solid':
						drawmode = 'stick'
				elif event.unicode in ['1', '2', '3', '4', '5', '6', '7', '8', '9']:
					if int(event.unicode) in range(1,len(amoebas)+1):
						dcBright = randColorBright()
						amoebas[activeID].destroy()
						activeID = int(event.unicode)-1
						amoebas[activeID].assemble()
						print "amoeba ID:\t", activeID
				elif event.key == pygame.K_RIGHT:
					amoebas[activeID].control.right = True
				elif event.key == pygame.K_LEFT:
					amoebas[activeID].control.left = True
				elif event.key == pygame.K_DOWN:
					amoebas[activeID].control.down = True
				elif event.key == pygame.K_UP:
					amoebas[activeID].control.up = True
				elif event.key == pygame.K_SPACE:
					amoebas[activeID].control.poof = True
				elif event.key == pygame.K_a:
					amoebas[activeID].control.stick = True
#				elif event.key == pygame.K_s:
#					master.slip = .99
				elif event.key == pygame.K_d:
					amoebas[activeID].control.fat = True
			elif event.type == pygame.KEYUP:
				if event.key == pygame.K_RIGHT:
					amoebas[activeID].control.right = False
				elif event.key == pygame.K_LEFT:
					amoebas[activeID].control.left = False
				elif event.key == pygame.K_DOWN:
					amoebas[activeID].control.down = False
				elif event.key == pygame.K_UP:
					amoebas[activeID].control.up = False
				elif event.key == pygame.K_SPACE:
					amoebas[activeID].control.poof = False
				elif event.key == pygame.K_a:
					amoebas[activeID].control.stick = False
#				elif event.key == pygame.K_s:
#					master.slip = .8
				elif event.key == pygame.K_d:
					amoebas[activeID].control.fat = False
			elif event.type == pygame.MOUSEBUTTONDOWN:
				amoebas[activeID].destroy()
				activeID = (activeID + 1) % len(amoebas)
				amoebas[activeID].assemble()
				dcBright = randColorBright()
				print "amoeba ID:\t", activeID
		
		## Time Steppage
		timestep = time.time() - time_last
		time_last = time.time()
		if master.update((time.time()-time_start)*timescale, max=.033) == False:
			lagged = True
		#	print "simtime\t" + str(master.simtime)
		#	print "time offset\t" + str((time.time() - time_start) - master.simtime)
		#	print "frame\t" + str(frame)
		#	print "step\t" + str(timestep)
		
		## Update Amoeba
		amoebas[activeID].update(master.timestep)
		
		# Win Test
		if amoebas[activeID].circle[0].pos[0] >= w-15:
			amoebas[activeID].destroy()
			activeID = (activeID + 1) % len(amoebas)
			amoebas[activeID].assemble()
			dcBright = randColorBright()
			print "amoeba ID:\t", activeID
		
		## Render
		# fps frames per second
		since_render = time.time() - last_render
		fps = 60.
		dectime = time.time() - int(time.time())
		if since_render >= 1/fps:
			screen.fill((255, 255, 255))
			render(drawmode, lagged)
			pygame.display.flip()
			lagged = False
			last_render = time.time()
Esempio n. 5
0
outname = outdir + '/' + sourceName + '-' + order
fp = open(outname + '-gtmap3.txt', 'w')

for iT in range(len(tList)):
    t = tList[iT]
    for iG in range(len(gList)):
        g = gList[iG]

        #p0 = [0.00010, 0.869, 5.0, 35.0, xStar[0], median(xStar), xStar[-1]]
        p0 = [0.00010, 0.5, 0.0, 25.0, xStar[0], median(xStar), xStar[-1]]
        scl = [
            0.2 * p0[0], 0.1 * p0[1], 15.0, 25.0, p0[0] * 2.0, p0[0] * 2.0,
            p0[0] * 2.0
        ]
        ymodel = protoModels[:, iT, iG]
        aresult = amoeba.amoeba(p0, scl, negchisq, data=(xmodel, ymodel))
        p0 = aresult[0]
        scl = list(array(scl) / 2.0)
        aresult = amoeba.amoeba(p0, scl, negchisq, data=(xmodel, ymodel))
        p0 = aresult[0]

        print -aresult[1],
        print t, g,
        for thing in aresult[0]:
            print thing,
        print ''
        if t >= 8.5 and t <= 28. and g >= 3.5 and g <= 5.5:
            print >> fp, -aresult[1],
            print >> fp, t, g,
            for thing in aresult[0]:
                print >> fp, thing,
Esempio n. 6
0
  def lattice(data, frozen_boson, n, ph_symmetry, accepted_mu_range=[-2.0,2.0]):
    def get_n(dt):
      dt.get_Gkw_direct() #gets Gkw from w, mu, epsilon and Sigma and X
      dt.get_Fkw_direct() #gets Fkw from w, mu, epsilon and Sigma and X
      dt.get_G_loc() #gets G_loc from Gkw
      dt.get_n_from_G_loc()     

    if mpi.is_master_node(): print "supercond_hubbard: lattice"

    if (n is None) or ((n==0.5) and ph_symmetry):
      if n==0.5: #otherwise - nothing to be done
        data.mus['up'] = 0
        if 'down' in data.fermionic_struct.keys(): data.mus['down'] = data.mus['up']  
        get_n(data)
    else:
      def func(var, data):
        mu = var[0]
        dt = data[0]
        #print "func call! mu: ", mu, " n: ",dt.ns['up']
        n= data[1] 
        dt.mus['up'] = mu
        if 'down' in dt.fermionic_struct.keys(): dt.mus['down'] = dt.mus['up']
        get_n(dt)        #print "funcvalue: ",-abs(n - dt.ns['up'])  

        val = 1.0-abs(n - dt.ns['up'])  
        if mpi.is_master_node(): print "amoeba func call: val = ",val
        if val != val: return -1e+6
        else: return val
      if not MASTER_SLAVE_ARCHITECTURE: mpi.barrier()

      if mpi.is_master_node(): print "about to do mu search:"

      guesses = [data.mus['up'], 0.0, -0.1, -0.3, -0.4, -0.5, -0.7, 0.3, 0.5, 0.7]
      found = False  
      for l in range(len(guesses)):
        varbest, funcvalue, iterations = amoeba(var=[guesses[l]],
                                              scale=[0.01],
                                              func=func, 
                                              data = [data, n],
                                              itmax=30,
                                              ftolerance=1e-2,
                                              xtolerance=1e-2,
                                              known_max = 1.0,
                                              known_max_accr = 5e-5)
        if (varbest[0]>accepted_mu_range[0] and varbest[0]<accepted_mu_range[1]) and (abs(funcvalue-1.0)<1e-2): #change the bounds for large doping
          found = True 
          func(varbest, [data, n])
          break 
        if l+1 == len(guesses):
          if mpi.is_master_node(): print "mu search FAILED: doing a scan..."

          mu_grid = numpy.linspace(-1.0,0.3,50)
          func_values = [func(var=[mu], data=[data,n]) for mu in mu_grid]
          if mpi.is_master_node(): 
            print "func_values: "
            for i in range(len(mu_grid)):
              print "mu: ",mu_grid[i], " 1-abs(n-n): ", func_values[i]
          mui_max = numpy.argmax(func_values)
          if mpi.is_master_node(): print "using mu: ", mu_grid[mui_max]
          data.mus['up'] = mu_grid[mui_max]
          if 'down' in data.fermionic_struct.keys(): data.mus['down'] = data.mus['up']
          get_n(data)

             
      if mpi.is_master_node() and found:
        print "guesses tried: ", l  
        print "mu best: ", varbest
        print "1-abs(diff n - data.n): ", funcvalue
        print "iterations used: ", iterations

    data.get_Gtildekw() #gets Gkw-G_loc

    if not frozen_boson: 
      data.get_Wqnu_from_func(func =  dict.fromkeys(data.bosonic_struct.keys(), dyson.scalar.W_from_P_and_J)) #gets Wqnu from P and J 
      data.get_W_loc() #gets W_loc from Wqnu, used in local bubbles
      data.get_Wtildeqnu()
Esempio n. 7
0
  f.write("1   1\n")
  f.write("%10.5f\n1.0\n" % (rcp,) )
  f.write("%endblock PAO.Basis\n")
  f.close()
             
  atoms = ListOfAtoms([Atom('Ga', (0.0,0.0,0.0),magmom=0),
                       Atom('Ga', (2.0,0.0,0.0),magmom=0)])

  a = Siesta(executable="/Users/ag/bin/siesta-xlf")

  a.SetOption("%include","base.fdf")
  energy = a.run(atoms)

  print rcs, rcp, energy
  return  -energy


URLbase = "http://fisica.ehu.es/ag/siesta-psffiles/"

# create a work subdirectory
orig_dir = os.getcwd()
dir = "simplex_work"
if os.path.isdir(dir): # does dir exist? 
  shutil.rmtree(dir) # yes, remove old directory 
os.mkdir(dir) # make dir directory 
os.chdir(dir) # move to dir 

urllib.urlretrieve(URLbase + "Ga.lda.psf", "Ga.psf") 

print amoeba.amoeba([4.25,4.25],[2.5,2.5],afunc,xtolerance=5.0e-2)
Esempio n. 8
0
def optimize(
    runpath, resultspath, inputtemplatepath, vararr, runcommand, ftolerance=1.0e-4, xtolerance=1.0e-4, itmax=500
):
    amoebalog = open(resultspath + "/amoeba.log", "w+")
    optimizelog = open(resultspath + "/optimize.log", "w+")
    optimizelog.write("runpath  " + runpath + "\n")
    optimizelog.write("resultspath  " + resultspath + "\n")
    optimizelog.write("inputtemplatepath  " + inputtemplatepath + "\n")

    optimizelog.write("Variables:\n")

    inputtree = etree.parse(inputtemplatepath)
    inputdscr = "Input file generated by script optimize.py \n"
    inputdscr = inputdscr + "runpath: %s\n" % (runpath)
    inputdscr = inputdscr + "resultspath: %s\n" % (resultspath)
    inputdscr = inputdscr + "input template from path: %s\n" % (inputtemplatepath)
    inputdscr = inputdscr + "optimization varibales:\n"

    for var in vararr:
        optimizelog.write("xpath: " + var[0] + "\n")
        optimizelog.write("guess: " + str(var[1]) + "\n")
        optimizelog.write("scale: " + str(var[2]) + "\n")
        inputdscr = inputdscr + "xpath: " + str(var[0]) + "\n"
        inputdscr = inputdscr + "guess: " + str(var[1]) + "\n"
        inputdscr = inputdscr + "scale: " + str(var[2]) + "\n"

    optimizelog.flush()

    setinputxml.setByXpath(inputtree, "/input/keywords", inputdscr)
    inputtree.write(runpath + "/input.xml", pretty_print="true")

    guess = []
    scale = []
    data = []
    data.append(runpath)
    data.append(runcommand)
    data.append([])
    for var in vararr:
        data[-1].append(var[0])  # build xpath array
        guess.append(var[1])  # build array of initial guess values for the variables
        scale.append(var[2])

    simplex, fvalue, iteration = amoeba.amoeba(guess, scale, energy, ftolerance, xtolerance, itmax, data, amoebalog)

    amoebalog.write("%d\t" % (iteration))
    amoebalog.write("%1.10f\t" % (fvalue))
    for value in simplex:
        amoebalog.write("%1.10f\t" % (value))
    amoebalog.write("\n")
    amoebalog.flush()

    optimizelog.write("\nOptimization converged after %d iterations of amoeba.py\n" % (iteration))
    optimizelog.write("\nOptimized variables found:\n")
    for i, var in enumerate(vararr):
        optimizelog.write("xpath: " + var[0] + "\n")
        optimizelog.write("optimized value: %1.0f\n\n" % (simplex[i]))

    optimizelog.flush()

    optimizelog.close()
    amoebalog.close()