Esempio n. 1
0
    def test_save_load(self):
        model = nnRegressor.Convolutional_NN_Model(self.input_dim,
                                                   self.target_dim)
        reg = nnRegressor.NeuralNetRegressor(model=model,
                                             patience=1,
                                             use_gpu=True)
        reg.save('testCNN')
        self.assertTrue(os.path.exists('testCNN'))

        newReg = nnRegressor.NeuralNetRegressor()
        newReg.load('testCNN')
        self.assertEquals(newReg.model.input_dim, self.input_dim)
        self.assertEquals(newReg.model.output_dim, self.target_dim)
Esempio n. 2
0
    def test_save_load(self):
        model = nnRegressor.Linear_NN_Model(self.input_dim, self.target_dim,
                                            'mean')
        reg = nnRegressor.NeuralNetRegressor(model=model,
                                             patience=1,
                                             use_gpu=True)
        reg.save('test')
        self.assertTrue(os.path.exists('test'))

        newReg = nnRegressor.NeuralNetRegressor()
        newReg.load('test')
        self.assertEquals(newReg.model.fc1.in_features, self.input_dim)
        self.assertEquals(newReg.model.fc3.out_features, self.target_dim)
Esempio n. 3
0
    def test_score(self):
        model = nnRegressor.Linear_NN_Model(self.input_dim, self.target_dim,
                                            'mean')
        reg = nnRegressor.NeuralNetRegressor(model=model,
                                             patience=1,
                                             use_gpu=True)

        fitted = reg.fit(self.X_train, self.y_train)
        score = fitted.score(self.X_test, self.y_test)
Esempio n. 4
0
    def test_score(self):
        input_dim = len(self.X_train[0, :])
        target_dim = len(self.y_train[0, :])

        model = nnRegressor.Convolutional_NN_Model(input_dim, target_dim)
        fittedReg = nnRegressor.NeuralNetRegressor(
            model=model, patience=1).fit(self.X_train, self.y_train)

        score = fittedReg.score(self.X_test, self.y_test)
Esempio n. 5
0
    def test_predict_without_GPU_default_model(self):
        fittedReg = nnRegressor.NeuralNetRegressor(patience=1).fit(
            self.X_train, self.y_train)

        result = fittedReg.predict(self.X_test)
        self.assertEqual(next(fittedReg.model.parameters()).is_cuda, False)
        self.assertEqual(result.shape,
                         (len(self.X_test), len(self.y_test[0, :])))
        self.assertTrue(type(result) is numpy.ndarray)
        self.assertTrue(result.dtype is numpy.dtype('float32')
                        or result.dtype is numpy.dtype('float64'))
Esempio n. 6
0
    def test_predict_without_GPU(self):

        model = nnRegressor.Linear_NN_Model(self.input_dim, self.target_dim,
                                            'mean')
        fittedReg = nnRegressor.NeuralNetRegressor(
            model=model, patience=1).fit(self.X_train, self.y_train)

        result = fittedReg.predict(self.X_test)
        self.assertEqual(next(fittedReg.model.parameters()).is_cuda, False)
        self.assertEqual(result.shape,
                         (len(self.X_test), len(self.y_test[0, :])))
        self.assertTrue(type(result) is numpy.ndarray)
        self.assertTrue(result.dtype is numpy.dtype('float32')
                        or result.dtype is numpy.dtype('float64'))
Esempio n. 7
0
def perform_GridSearch(X, y):
    scorer = make_scorer(metrics.average_relative_root_mean_squared_error,
                         greater_is_better=False)
    parameters = {
        "learning_rate": [0.01],  # 0.001, 0.1, 0.2, 0.3],
        "patience": [1]  #, 3, 5, 8]
    }

    reg = GridSearchCV(nn.NeuralNetRegressor(training_limit=10000),
                       parameters,
                       cv=3,
                       scoring=scorer,
                       n_jobs=1)

    return reg.fit(X, y)
Esempio n. 8
0
    def test_predict_with_GPU(self):
        if torch.cuda.is_available():
            input_dim = len(self.X_train[0, :])
            target_dim = len(self.y_train[0, :])

            model = nnRegressor.Convolutional_NN_Model(input_dim, target_dim)
            fittedReg = nnRegressor.NeuralNetRegressor(model=model,
                                                       patience=1,
                                                       use_gpu=True).fit(
                                                           self.X_train,
                                                           self.y_train)

            result = fittedReg.predict(self.X_test)

            self.assertEqual(next(fittedReg.model.parameters()).is_cuda, True)
            self.assertEqual(result.shape,
                             (len(self.X_test), len(self.y_test[0, :])))
            self.assertTrue(type(result) is numpy.ndarray)
            self.assertTrue(result.dtype is numpy.dtype('float32')
                            or result.dtype is numpy.dtype('float64'))