def train_calc(inputs): images, filename, file_dir, Gs, lj, forcesonly, scaling = inputs class train_end_load_best_valid_loss(skorch.callbacks.base.Callback): def on_train_end(self, net, X, y): net.load_params( "./results/checkpoints/{}_params.pt".format(filename)) cp = Checkpoint( monitor="forces_score_best", fn_prefix="./results/checkpoints/{}_".format(filename), ) if not os.path.exists(file_dir): os.makedirs(file_dir, exist_ok=True) forcetraining = True training_data = AtomsDataset( images, SNN_Gaussian, Gs, forcetraining=forcetraining, label=filename, cores=1, lj_data=None, scaling=scaling, ) unique_atoms = training_data.elements fp_length = training_data.fp_length device = "cpu" torch.set_num_threads(1) net = NeuralNetRegressor( module=FullNN(unique_atoms, [fp_length, 3, 20], device, forcetraining=forcetraining), criterion=CustomMSELoss, criterion__force_coefficient=0.04, optimizer=torch.optim.LBFGS, lr=1e-1, batch_size=len(training_data), max_epochs=200, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=False, iterator_valid__collate_fn=collate_amp, iterator_valid__shuffle=False, device=device, train_split=CVSplit(cv=5, random_state=1), callbacks=[ EpochScoring( forces_score, on_train=False, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=False, use_caching=True, target_extractor=target_extractor, ), ], ) calc = AMP(training_data, net, label=filename) calc.train() return [training_data, net, filename]
iterator_valid__collate_fn=collate_amp, device=device, # train_split=0, verbose=1, callbacks=[ EpochScoring( forces_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), ], ) calc_amptorch = AMP(training_data, net, label=label) calc_amptorch.train(overwrite=True) # for evaluation in cpu # net_load = copy.copy(net) # calc_cpu = AMP(training_data, net_load, label) # calc_cpu.load(filename='./results/trained_models/{}.pt'.format(label)) parity_plot(calc_amptorch, images, data="energy", label=label) parity_plot(calc_amptorch, images, data="forces", label=label)
criterion__force_coefficient=0.3, optimizer=torch.optim.LBFGS, optimizer__line_search_fn="strong_wolfe", lr=1e-1, batch_size=len(images), max_epochs=50, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=False, iterator_valid__collate_fn=collate_amp, device=device, train_split=0, callbacks=[ EpochScoring( forces_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), ], ) calc = AMP(training_data, net, label) calc.train(overwrite=True) parity_plot(calc, images, data="energy", label=label) parity_plot(calc, images, data="forces", label=label)
def test_skorch(): distances = np.linspace(2, 5, 100) label = "skorch_example" images = [] energies = [] forces = [] for l in distances: image = Atoms( "CuCO", [ (-l * np.sin(0.65), l * np.cos(0.65), 0), (0, 0, 0), (l * np.sin(0.65), l * np.cos(0.65), 0), ], ) image.set_cell([10, 10, 10]) image.wrap(pbc=True) image.set_calculator(EMT()) images.append(image) energies.append(image.get_potential_energy()) forces.append(image.get_forces()) energies = np.array(energies) forces = np.concatenate(np.array(forces)) Gs = {} Gs["G2_etas"] = np.logspace(np.log10(0.05), np.log10(5.0), num=2) Gs["G2_rs_s"] = [0] * 2 Gs["G4_etas"] = [0.005] Gs["G4_zetas"] = [1.0] Gs["G4_gammas"] = [+1.0, -1] Gs["cutoff"] = 6.5 forcetraining = True training_data = AtomsDataset( images, SNN_Gaussian, Gs, forcetraining=forcetraining, label=label, cores=1, delta_data=None, ) unique_atoms = training_data.elements fp_length = training_data.fp_length device = "cpu" net = NeuralNetRegressor( module=FullNN(unique_atoms, [fp_length, 2, 2], device, forcetraining=forcetraining), criterion=CustomMSELoss, criterion__force_coefficient=0.3, optimizer=torch.optim.LBFGS, optimizer__line_search_fn="strong_wolfe", lr=1, batch_size=100, max_epochs=150, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=True, iterator_valid__collate_fn=collate_amp, device=device, train_split=0, verbose=0, callbacks=[ EpochScoring( forces_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), ], ) calc = AMP(training_data, net, "test") calc.train(overwrite=True) num_of_atoms = 3 calculated_energies = np.array( [calc.get_potential_energy(image) for image in images]) energy_rmse = np.sqrt( (((calculated_energies - energies) / num_of_atoms)**2).sum() / len(images)) calculated_forces = np.concatenate( np.array([calc.get_forces(image) for image in images])) force_rmse = np.sqrt((((calculated_forces - forces))**2).sum() / (3 * num_of_atoms * len(images))) l1_force = np.sum(np.abs(calculated_forces - forces) / num_of_atoms, 1) idx = 0 force_loss_image = np.zeros((len(calculated_energies), 1)) for i in range(len(calculated_energies)): force_loss_image[i] = np.sum(l1_force[idx:idx + 3]) idx += 3 force_loss_image /= 3 reported_energy_score = net.history[-1]["energy_score"] reported_forces_score = net.history[-1]["forces_score"] assert force_rmse <= 0.005, "Force training convergence not met!" assert energy_rmse <= 0.005, "Energy training convergence not met!" assert round(reported_energy_score, 4) == round(energy_rmse, 4), "Shuffled reported energy scores incorrect!" assert round(reported_forces_score, 4) == round(force_rmse, 4), "Shuffled reported forces score incorrect!"
def test_skorch_delta(): from amptorch.skorch_model import AMP cp = Checkpoint(monitor="valid_loss_best", fn_prefix="valid_best_") distances = np.linspace(2, 5, 10) label = "skorch_example" images = [] energies = [] forces = [] for l in distances: image = Atoms( "CuCO", [ (-l * np.sin(0.65), l * np.cos(0.65), 0), (0, 0, 0), (l * np.sin(0.65), l * np.cos(0.65), 0), ], ) image.set_cell([10, 10, 10]) image.wrap(pbc=True) image.set_calculator(EMT()) images.append(image) energies.append(image.get_potential_energy()) forces.append(image.get_forces()) image = Atoms("CuC", [(-1, 1, 0), (1, 1, 0)]) image.set_cell([10, 10, 10]) image.wrap(pbc=True) image.set_calculator(EMT()) images.append(image) energies.append(image.get_potential_energy()) forces.append(image.get_forces()) energies = np.array(energies) forces = np.concatenate(np.array(forces)) Gs = {} Gs["G2_etas"] = np.logspace(np.log10(0.05), np.log10(5.0), num=2) Gs["G2_rs_s"] = [0] * 2 Gs["G4_etas"] = [0.005] Gs["G4_zetas"] = [1.0] Gs["G4_gammas"] = [+1.0, -1] Gs["cutoff"] = 6.5 params = { "C": {"re": 0.972, "D": 6.379, "sig": 0.477}, "O": {"re": 1.09, "D": 8.575, "sig": 0.603}, "Cu": {"re": 2.168, "D": 3.8386, "sig": 1.696}, } morse_model = morse_potential(images, params, Gs["cutoff"], label) morse_energies, morse_forces, num_atoms = morse_model.morse_pred( images, params) morse_data = [morse_energies, morse_forces, num_atoms, params, morse_model] forcetraining = True training_data = AtomsDataset( images, SNN_Gaussian, Gs, forcetraining=forcetraining, label=label, cores=1, delta_data=morse_data, ) batch_size = len(training_data) unique_atoms = training_data.elements fp_length = training_data.fp_length device = "cpu" net = NeuralNetRegressor( module=FullNN( unique_atoms, [fp_length, 2, 2], device, forcetraining=forcetraining ), criterion=CustomMSELoss, criterion__force_coefficient=0.3, optimizer=torch.optim.LBFGS, optimizer__line_search_fn="strong_wolfe", lr=1e-2, batch_size=batch_size, max_epochs=100, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=False, iterator_valid__collate_fn=collate_amp, device=device, train_split=0, verbose=0, callbacks=[ EpochScoring( forces_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), ], ) calc = AMP(training_data, net, "test") calc.train(overwrite=True) num_of_atoms = 3 calculated_energies = np.array( [calc.get_potential_energy(image) for idx, image in enumerate(images)] ) energy_rmse = np.sqrt( (((calculated_energies - energies) / num_of_atoms) ** 2).sum() / len(images) ) last_energy_score = net.history[-1]["energy_score"] assert round(energy_rmse, 4) == round( last_energy_score, 4 ), "Energy errors incorrect!" last_forces_score = net.history[-1]["forces_score"] calculated_forces = np.concatenate( np.array([calc.get_forces(image) for image in images]) ) force_rmse = np.sqrt( (((calculated_forces - forces)) ** 2).sum() / (3 * num_of_atoms * len(images)) ) assert round(force_rmse, 4) == round( last_forces_score, 4 ), "Force errors incorrect!"
def test_skorch_val(): distances = np.linspace(2, 5, 100) label = "example" images = [] energies = [] forces = [] for l in distances: image = Atoms( "CuCCu", [ (-l * np.sin(0.65), l * np.cos(0.65), 0), (0, 0, 0), (l * np.sin(0.65), l * np.cos(0.65), 0), ], ) image.set_cell([10, 10, 10]) image.wrap(pbc=True) image.set_calculator(EMT()) images.append(image) energies.append(image.get_potential_energy()) forces.append(image.get_forces()) energies = np.array(energies) Gs = {} Gs["G2_etas"] = np.logspace(np.log10(0.05), np.log10(5.0), num=2) Gs["G2_rs_s"] = [0] * 2 Gs["G4_etas"] = [0.005] Gs["G4_zetas"] = [1.0] Gs["G4_gammas"] = [+1.0, -1] Gs["cutoff"] = 6.5 forcetraining = True training_data = AtomsDataset( images, SNN_Gaussian, Gs, forcetraining=forcetraining, label=label, cores=1, delta_data=None, ) batch_size = len(training_data) unique_atoms = training_data.elements fp_length = training_data.fp_length device = "cpu" net = NeuralNetRegressor( module=FullNN(unique_atoms, [fp_length, 2, 2], device, forcetraining=forcetraining), criterion=CustomMSELoss, criterion__force_coefficient=0.3, optimizer=torch.optim.LBFGS, optimizer__line_search_fn="strong_wolfe", lr=1e-2, batch_size=10, max_epochs=20, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=True, iterator_valid__collate_fn=collate_amp, device=device, train_split=CVSplit(0.1, random_state=1), verbose=0, callbacks=[ EpochScoring( forces_score, on_train=False, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=False, use_caching=True, target_extractor=target_extractor, ), ], ) val_indices = [80, 84, 33, 81, 93, 17, 36, 82, 69, 65] val_images = [images[idx] for idx in val_indices] val_energies = energies[val_indices] val_forces = np.concatenate(np.array([forces[idx] for idx in val_indices])) calc = AMP_skorch(training_data, net, "test") calc.train(overwrite=True) num_of_atoms = 3 last_energy_score = net.history[-1]["energy_score"] last_forces_score = net.history[-1]["forces_score"] calculated_energies = np.array( [calc.get_potential_energy(image) for image in val_images]) energy_rmse = np.sqrt( (((calculated_energies - val_energies) / num_of_atoms)**2).sum() / len(val_images)) assert round(energy_rmse, 5) == round(last_energy_score, 5), "Validation energy errors incorrect!" calculated_forces = np.concatenate( np.array([calc.get_forces(image) for image in val_images])) force_rmse = np.sqrt((((calculated_forces - val_forces))**2).sum() / (3 * num_of_atoms * len(val_images))) assert round(force_rmse, 5) == round(last_forces_score, 5), "Validation force errors incorrect!"
def test_load(): distances = np.linspace(2, 5, 100) label = "example" images = [] for l in distances: image = Atoms( "CuCO", [ (-l * np.sin(0.65), l * np.cos(0.65), 0), (0, 0, 0), (l * np.sin(0.65), l * np.cos(0.65), 0), ], ) image.set_cell([10, 10, 10]) image.wrap(pbc=True) image.set_calculator(EMT()) images.append(image) # define symmetry functions to be used Gs = {} Gs["G2_etas"] = np.logspace(np.log10(0.05), np.log10(5.0), num=4) Gs["G2_rs_s"] = [0] * 4 Gs["G4_etas"] = [0.005] Gs["G4_zetas"] = [1.0] Gs["G4_gammas"] = [+1.0, -1] Gs["cutoff"] = 6.5 forcetraining = True training_data = AtomsDataset(images, SNN_Gaussian, Gs, forcetraining=forcetraining, label=label, cores=1, delta_data=None) unique_atoms = training_data.elements fp_length = training_data.fp_length device = "cpu" net = NeuralNetRegressor( module=FullNN(unique_atoms, [fp_length, 3, 10], device, forcetraining=forcetraining), criterion=CustomMSELoss, criterion__force_coefficient=0.3, optimizer=torch.optim.LBFGS, optimizer__line_search_fn="strong_wolfe", lr=1e-1, batch_size=len(images), max_epochs=5, iterator_train__collate_fn=collate_amp, iterator_train__shuffle=False, iterator_valid__collate_fn=collate_amp, device=device, train_split=0, verbose=0, callbacks=[ EpochScoring( forces_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), EpochScoring( energy_score, on_train=True, use_caching=True, target_extractor=target_extractor, ), ], ) net_2 = copy.copy(net) calc_1 = AMP(training_data, net, 'test') calc_1.train(overwrite=True) energy_1 = calc_1.get_potential_energy(images[0]) forces_1 = calc_1.get_forces(images[0]) calc_2 = AMP(training_data, net_2, 'test') calc_2.load(filename='./results/trained_models/test.pt') energy_2 = calc_2.get_potential_energy(images[0]) forces_2 = calc_2.get_forces(images[0]) assert energy_1 == energy_2, "Energies do not match!" assert (forces_1 == forces_2).all(), "Forces do not match!"