def setUp(self): p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl')) config = ModelConfig() config.vocab_size = len(p.vocab_word) config.char_vocab_size = len(p.vocab_char) model = SeqLabeling(config, ntags=len(p.vocab_tag)) model.load(filepath=os.path.join(SAVE_ROOT, 'model_weights.h5')) self.tagger = anago.Tagger(model, preprocessor=p) self.sent = 'President Obama is speaking at the White House.'
def test_eval(self): test_path = os.path.join(DATA_ROOT, 'test.txt') x_test, y_test = load_data_and_labels(test_path) p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl')) config = ModelConfig() config.vocab_size = len(p.vocab_word) config.char_vocab_size = len(p.vocab_char) model = SeqLabeling(config, ntags=len(p.vocab_tag)) model.load(filepath=os.path.join(SAVE_ROOT, 'model_weights.h5')) evaluator = anago.Evaluator(model, preprocessor=p) evaluator.eval(x_test, y_test)
def setUp(self): SAVE_ROOT = os.path.join(os.path.dirname(__file__), '../models') model_config = ModelConfig() p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl')) model_config.vocab_size = len(p.vocab_word) model_config.char_vocab_size = len(p.vocab_char) weights = 'model_weights.h5' self.tagger = anago.Tagger(model_config, weights, save_path=SAVE_ROOT, preprocessor=p) self.sent = 'President Obama is speaking at the White House.'
def test_eval(self): DATA_ROOT = os.path.join(os.path.dirname(__file__), '../data/conll2003/en/tagging') SAVE_ROOT = os.path.join(os.path.dirname(__file__), '../models') model_config = ModelConfig() test_path = os.path.join(DATA_ROOT, 'test.txt') x_test, y_test = load_data_and_labels(test_path) p = WordPreprocessor.load(os.path.join(SAVE_ROOT, 'preprocessor.pkl')) model_config.vocab_size = len(p.vocab_word) model_config.char_vocab_size = len(p.vocab_char) weights = 'model_weights.h5' evaluator = anago.Evaluator(model_config, weights, save_path=SAVE_ROOT, preprocessor=p) evaluator.eval(x_test, y_test)
from anago.reader import load_word_embeddings, load_data_and_labels DATA_ROOT = 'data/conll2003/en/ner' LOAD_ROOT = './models' # trained model LOG_ROOT = './logs' # checkpoint, tensorboard embedding_path = '/media/jan/OS/Dataset/WordEmbeddings/wiki.en.vec' model_config = ModelConfig() test_path = os.path.join(DATA_ROOT, 'train.small.txt') x_test, y_test = load_data_and_labels(test_path) p = prepare_preprocessor(x_test, y_test) embeddings = load_word_embeddings(p.vocab_word, embedding_path, model_config.word_embedding_size) model_config.vocab_size = len(p.vocab_word) model_config.char_vocab_size = len(p.vocab_char) model_path = os.path.join(LOAD_ROOT, 'mymodel.h5') model = SeqLabeling(model_config, embeddings, len(p.vocab_tag)) model.load(model_path) X, y = p.transform(x_test, y_test) predictions = model.predict(X) for words, prediction, sentence_length in zip(x_test, predictions, X[2]): nopad_prediction = prediction[:sentence_length.item()] label_indices = [np.argmax(x) for x in nopad_prediction] labels = p.inverse_transform(label_indices) print "\n".join(["{}\t{}".format(w, l) for w, l in zip(words, labels)]) print ''