Esempio n. 1
0
            if os.path.isfile(datafilename):
                datafile = open(datafilename, 'rb')
            else:
                continue
            thedata = pickle.load(datafile)
            simfile = constant.simresultfolder + str(
                stid) + '/exptemp_' + stname + '_' + str(t) + '_' + str(
                    p) + '_' + str(y) + '_' + str(d) + '.txt'
            [h, m, temp] = utils.readtempfile(simfile)
            sec = 3600 * h + 60 * m
            hour = h * 100 + m * (100. / 60.)
            thedata.sim = temp
            thedata.timesim = hour

            day = utils.doytodate(y, d)
            an = analyse.Analyse(day, 0, 0, thedata)
            simparam = an.getsimparam()

            an.correctbaseline(stname)
            signalwindow = 4
            fitresult = an.fitdata2(signalwindow)
            [fithourarray, fitradio] = an.getdataforfit(4)
            if (fitresult.success == True):
                #                 fig = plt.figure()
                #                 plt.plot(fithourarray,fitradio)
                #                 plt.plot(fithourarray, fitresult.best_fit, 'r-')
                #                 plt.gca().text(np.mean(fithourarray),np.mean(fitradio), r'$\frac{\chi^2}{ndl} = $' +str(fitresult.redchi), fontsize=15)
                #                saving part:
                outname = constant.datafit2folder + str(
                    stid) + '/fit2_' + stname + '_' + str(t) + '_' + str(
                        p) + '_' + str(y) + '_' + str(d) + '.txt'
Esempio n. 2
0
from flask import Flask, request, render_template
import analyse as an

app = Flask(__name__)

# @app.before_request
# def load_analyser():
processor = an.Analyse()


@app.route("/")
def home():
    return render_template("home.html")


@app.route("/about")
def about():
    return render_template("about.html")


@app.route('/', methods=['POST'])
def my_form_post():
    text = request.form['text']
    #processed_text = text.upper()

    processed_text = processor.processText(text)  # call to Analyse object
    return processed_text


if __name__ == "__main__":
    app.run(host='0.0.0.0', port='80')
Esempio n. 3
0
    print datafilename
    if os.path.isfile(datafilename):
        datafile = open(datafilename, 'rb')
    else:
        continue
    thedata = pickle.load(datafile)
    simfile = constant.simresultfolder + '/fake/' + '/exptemp_fake' + stname + '_' + str(
        delt) + '_' + str(delp) + '_' + str(y) + '_' + str(d) + '.txt'
    [h, m, temp] = utils.readtempfile(simfile)
    sec = 3600 * h + 60 * m
    hour = h * 100 + m * (100. / 60.)
    thedata.sim = temp
    thedata.timesim = hour

    day = utils.doytodate(y, d)
    an = analyse.Analyse(day, delt, delp, thedata)
    simparam = an.getsimparam()

    an.correctbaseline(goodlistname)
    signalwindow = 3
    [fithours, fittedradio] = an.fitdata(signalwindow, 1)

    an.isgoodfit()

    ######################################
    ######## check fit of the data #######
    if an.goodfit:
        print an.fitresult[0]
        an.computetsys()
        an.geterrorsonfit()
        datearray = np.append(datearray, an.day)
Esempio n. 4
0
det = detector.Detector(temp = tsys, type=dettype)
det.loadspectrum()

scales = np.array([1,10,50,100,200])
iter = [1,2,3,4,5,6,7,8,9,10]
a_mean = np.array([])
a_rms = np.array([])
for scale in scales:
    meannr = 0 
    rmsnr = 0
    a_ev = np.array([])
    for it in iter:
        folder = '/Users/romain/work/Auger/EASIER/IPNcode/script/results/afterelec/' + '/scaling' + str(int(scale)) + '/' + str(it) + '/'
        filenames = 'ev_'
        names = glob.glob(folder+ filenames+'*.pkl')
        ana = analyse.Analyse(det=det)
        evcount = 0
        a_max = np.array([])
#        print names
        for n in names[::1]:
            file = open(n, 'rb')
            revent = pickle.load(file)
            if revent.shower.energy < 5:
                continue
            for ant in revent.antennas:       
                size = len(ant.trace)
                if size==0:
                    continue
                time = np.arange(0,size*binsize,binsize)
                wf = waveform.Waveform(time,ant.trace)
                #        time = ant.maketimearray()
Esempio n. 5
0
def main_func(pprocess=False,
              analyze=False,
              meta=False,
              classification=False,
              func='summary_stat',
              type='#anwps_freq',
              sex=False,
              age=False):

    # Do pre_processing task
    if (pprocess):
        # Read data_set with limited columns
        cupid_df = pd.read_csv('../data/raw/profiles.csv',
                               usecols=[
                                   'education', 'essay0', 'essay1', 'essay2',
                                   'essay3', 'essay7', 'essay8', 'essay9',
                                   'age', 'sex'
                               ])

        # Define an object of pre_processing class
        cupid = pre_processing.PreProcess()

        cupid_df = cupid.missing_value(cupid_df)
        cupid_df = cupid.merge_essay(cupid_df)
        cupid_df = cupid.remove_tag(cupid_df)
        cupid_df = cupid.recode_edcuaction(cupid_df)
        cupid_df = cupid.count_words_sentences(cupid_df)
        cupid_df = cupid.text_cleaning(cupid_df)

        # Save pre_processed dat_set on disk
        cupid_df.to_csv(r'../data/processed/preprocessed_cupid.csv',
                        index=None,
                        header=True)

        # Final message
        print(
            colored(
                'preprocessed_cupid.csv is written in data/preprocessed\
         folder...', 'red'))

    # ************************************************************************
    # Do analyses task
    elif (analyze):
        # Read pre_processed data_set with limited columns
        cupid_dfa = pd.read_csv('../data/processed/preprocessed_cupid.csv',
                                usecols=[
                                    'education', 'age', 'sex', 'text', 'isced',
                                    'isced2', '#words', '#sentences', '#anwps',
                                    'clean_text'
                                ])
        # cupid_dfa.rename(columns={'removed_stopwords': 'clean_text'},
        # inplace=True)

        # Define an object of pre_processing class
        a_cupid = analyse.Analyse()

        if (func == 'summary_stat'):
            summary_df = a_cupid.summary(cupid_dfa)
            summary_df.to_json(r'../results/figures/summary_statistics.json')
            summary_df.to_csv(r'../results/figures/summary_statistics.csv')
            print(
                colored(
                    'summary_statistics.csv is written in '
                    'results/figure folder...', 'magenta'))
        elif (func == 'plot'):
            a_cupid.plot_func(cupid_dfa, type, sex)

    # *************************************************************************
    # Calculate meta_data
    if (meta):
        style = meta_data.Stylo()
        # Read data_set
        df_preprocessed = pd.read_csv(
            '../data/processed/preprocessed_cupid.csv',
            usecols=[
                'age', 'sex', '#anwps', 'clean_text', "text", 'isced', 'isced2'
            ])

        df_preprocessed.dropna(subset=['text', 'isced'], inplace=True)

        # Print the progress number
        print(colored('\nCalculating count_char:\n', 'green'))
        df_preprocessed['count_char'] = df_preprocessed.progress_apply(
            lambda x: style.count_char(x['text']), axis=1)

        # Print the progress number
        print(colored('\nCalculating count_punct:\n', 'green'))
        df_preprocessed['count_punct'] = df_preprocessed.progress_apply(
            lambda x: style.count_punc(x['text']), axis=1)

        # df_preprocessed['count_digit'] = sum(c.isdigit() for c in
        #                                      df_preprocessed['text'])

        # Print the progress number
        print(colored('\nCalculating count_word:\n', 'green'))
        df_preprocessed['count_word'] = df_preprocessed.progress_apply(
            lambda x: style.count_words(x['text']), axis=1)

        # Print the progress number
        print(colored('\nCalculating avg_wordlength:\n', 'green'))
        df_preprocessed['avg_wordlength'] = round(
            df_preprocessed['count_char'] / df_preprocessed['count_word'], 2)

        # Print the progress number
        print(colored('\nCalculating count_misspelled:\n', 'green'))
        df_preprocessed['count_misspelled'] = \
            df_preprocessed.progress_apply(lambda x:
                                           style.count_spellerror(x[
                                               'text']), axis=1)

        # df_preprocessed['readability'] = df_preprocessed.progress_apply(
        #     lambda x: style.text_readability(x['text']), axis=1)

        # Print the progress number
        print(colored('\nCalculating words uniqueness:\n', 'green'))
        df_preprocessed['word_uniqueness'] = df_preprocessed.progress_apply(
            lambda x: style.uniqueness(x['text']), axis=1)

        # Save calculated meta_data on disk
        df_preprocessed.to_csv(r'../data/processed/stylo_cupid_test.csv',
                               index=None,
                               header=True)

        # Final message
        print(
            colored(
                'stylo_cupid.csv is written in data/preprocessed\
                 folder...', 'red'))

    # **************************************************************************
    if (classification):
        cls = classify.Classifier()
        df_cls = pd.read_csv(r'../data/processed/stylo_cupid2.csv')
        cls.logistic_text_meta(df_cls)
Esempio n. 6
0
        else:
            continue        
        listofangle.append((delt,delp))
        popt = fitresult[0]
        #data name
        simtime = np.linspace(0,24,500)
        sim = utils.expofunc0(simtime,float(ls[2]),float(ls[3]),float(ls[4]),float(ls[5]))
        fitresult = datadict[(y,d)]
        popt = fitresult[0] 
        tofmax_data = popt[2] 
        data = utils.expofunc2(simtime,popt[0],popt[1],tofmax_data-3,popt[3],popt[4],popt[5])
        data = data - (popt[3]*simtime**2 + popt[4]*simtime + popt[5])
        datapoint = np.interp(float(ls[4]),simtime,data)
        if datapoint < 0.0001:
            datapoint =0.001
        theres = analyse.Analyse()
        theres.fitresult = fitresult
        theres.computetsys(float(ls[2]),datapoint)
        theres.geterrorsonfit2(float(ls[4]))
        #         plt.plot(simtime,sim)
#         plt.plot(simtime,data,'--')

# plt.show()
            
        day = utils.doytodate(y,d)
        a_tsys = np.append(a_tsys,theres.tsys)
#        print ' theres.tsys =  ', theres.tsys
        a_errtsys = np.append(a_errtsys,theres.errortsys)
        a_simtofmax = np.append(a_simtofmax,float(ls[4]))
        a_tofmax = np.append(a_tofmax,tofmax_data -3)
        a_errortofmax = np.append(a_errortofmax,theres.errortofmax)