Esempio n. 1
0
 def test_load_dataset_with_unknowns_nominals(self):
     al = ArffLoader("tests/dataset_with_unknowns.arff")
     expected_instances = numpy.asarray([[1.0, 0.0, 0.0, 1.2],
                                         [0.0, 0.0, 0.0, 0.3],
                                         [0.0, 1.0, 0.0, 3.0],
                                         [0.0, 0.0, 1.0, 4.0]])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
Esempio n. 2
0
 def test_load_dataset_with_label_not_last_attribute(self):
     al = ArffLoader("tests/dataset.arff", label_attribute="first")
     expected_instances = numpy.asarray([[1.2, 0.0], [0.3, 0.0], [3.0, 1.0],
                                         [4.0, 1.0]])
     expected_labels = numpy.asarray(["sheep", "cannon", "egg", "cannon"])
     instances, labels = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
     numpy.testing.assert_array_equal(expected_labels, labels)
Esempio n. 3
0
 def test_load_dataset_standard(self):
     al = ArffLoader("tests/dataset.arff")
     expected_instances = numpy.asarray([[1.0, 0.0, 0.0, 1.2],
                                         [0.0, 0.0, 1.0, 0.3],
                                         [0.0, 1.0, 0.0, 3.0],
                                         [0.0, 0.0, 1.0, 4.0]])
     expected_labels = numpy.asarray(["POS", "POS", "NEG", "NEG"])
     instances, labels = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
     numpy.testing.assert_array_equal(expected_labels, labels)
Esempio n. 4
0
 def test_load_dataset_with_unknown_feature(self):
     al = ArffLoader("tests/dataset_with_unknown_feature.arff")
     expected_instances = numpy.asarray([
         [1.2],
         [0.3],
         [3.0],
         [4.0]
     ])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
Esempio n. 5
0
 def test_load_dataset_with_useless_real_values(self):
     al = ArffLoader("tests/dataset_with_useless_real_values.arff")
     expected_instances = numpy.asarray([
         [1.2],
         [0.3],
         [3.0],
         [4.0]
     ])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_almost_equal(expected_instances, instances)
Esempio n. 6
0
 def test_load_dataset_with_unknowns_nominals(self):
     al = ArffLoader("tests/dataset_with_unknowns.arff")
     expected_instances = numpy.asarray([
         [1.0, 0.0, 0.0, 1.2],
         [0.0, 0.0, 0.0, 0.3],
         [0.0, 1.0, 0.0, 3.0],
         [0.0, 0.0, 1.0, 4.0]
     ])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
Esempio n. 7
0
 def test_load_dataset_with_label_not_last_attribute(self):
     al = ArffLoader("tests/dataset.arff", label_attribute="first")
     expected_instances = numpy.asarray([
         [1.2, 0.0],
         [0.3, 0.0],
         [3.0, 1.0],
         [4.0, 1.0]
     ])
     expected_labels = numpy.asarray([
         "sheep",
         "cannon",
         "egg",
         "cannon"
     ])
     instances, labels = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
     numpy.testing.assert_array_equal(expected_labels, labels)
Esempio n. 8
0
 def test_load_dataset_standard(self):
     al = ArffLoader("tests/dataset.arff")
     expected_instances = numpy.asarray([
         [1.0, 0.0, 0.0, 1.2],
         [0.0, 0.0, 1.0, 0.3],
         [0.0, 1.0, 0.0, 3.0],
         [0.0, 0.0, 1.0, 4.0]
     ])
     expected_labels = numpy.asarray([
         "POS",
         "POS",
         "NEG",
         "NEG"
     ])
     instances, labels = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)
     numpy.testing.assert_array_equal(expected_labels, labels)
Esempio n. 9
0
def main():
    for dataset_name in evaluation.dataset_names():
        dataset_path = "evaluation/datasets/{}.arff".format(dataset_name)
        X, y = ArffLoader(dataset_path).load_dataset()
        X = preprocessing.MinMaxScaler().fit_transform(X)

        n, n_feats = X.shape
        n_classes = len(numpy.unique(y))
        precisions = pow(X.var(axis=0), -1)
        mean_precision = numpy.mean(precisions)
        precision_var = numpy.var(precisions)

        numpy.set_printoptions(precision=3, suppress=True)
        print dataset_name
        print "\t          size:{: 5d}    ;           features: {: 6d}    ; classes: {}".format(n, n_feats, n_classes)
        print "\tmean precision: {: 8.3f}; precision variance: {:10.3f}".format(mean_precision, precision_var)
        print "\tprecisions:\n{}".format(precisions)
        print "\n\n"
Esempio n. 10
0
def main():
    for dataset_name in evaluation.dataset_names():
        dataset_path = "evaluation/datasets/{}.arff".format(dataset_name)
        X, y = ArffLoader(dataset_path).load_dataset()
        X = preprocessing.MinMaxScaler().fit_transform(X)

        n, n_feats = X.shape
        n_classes = len(numpy.unique(y))
        precisions = pow(X.var(axis=0), -1)
        mean_precision = numpy.mean(precisions)
        precision_var = numpy.var(precisions)

        numpy.set_printoptions(precision=3, suppress=True)
        print dataset_name
        print "\t          size:{: 5d}    ;           features: {: 6d}    ; classes: {}".format(
            n, n_feats, n_classes)
        print "\tmean precision: {: 8.3f}; precision variance: {:10.3f}".format(
            mean_precision, precision_var)
        print "\tprecisions:\n{}".format(precisions)
        print "\n\n"
Esempio n. 11
0
 def test_load_dataset_with_useless_real_values(self):
     al = ArffLoader("tests/dataset_with_useless_real_values.arff")
     expected_instances = numpy.asarray([[1.2], [0.3], [3.0], [4.0]])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_almost_equal(expected_instances, instances)
Esempio n. 12
0
 def test_load_dataset_with_unknown_feature(self):
     al = ArffLoader("tests/dataset_with_unknown_feature.arff")
     expected_instances = numpy.asarray([[1.2], [0.3], [3.0], [4.0]])
     instances, _ = al.load_dataset()
     numpy.testing.assert_array_equal(expected_instances, instances)