def test_new_average(): obj = Ta() obj.data = np.ones((5, 5)) obj.sweeps = [np.ones((5, 5)) * k for k in range(3)] obj.n_sweeps = len(obj.sweeps) obj.new_average([1, 1, 1]) assert obj.inc_sweeps == [1, 1, 1] assert list(obj.data.ravel()) == [1] * 25 obj.new_average([1, 1, 0]) assert obj.inc_sweeps == [1, 1, 0] assert list(obj.data.ravel()) == [0.5] * 25
def test_recalc(): obj = Ta() obj.data = np.ones((5, 5)) obj.wl = np.linspace(0, 4, 5) obj._t = np.linspace(0, 4, 5) obj.kin = np.zeros(5) obj.kin_rng = [2, 3.5] obj.recalc() assert obj.spe is None assert list(obj.kin[0]) == [1] * len(obj.wl) assert obj.spe_rng is None
def test_uberfast_import(): data = Ta(path_uberfast_data) assert data.data.shape == (178, 510) assert data.t_unit == 'ps' assert data.wl_unit == 'nm' assert data._t.shape == (178, ) assert data.wl.shape == (510, ) assert data.inc_sweeps == [1] * 20 assert data.n_sweeps == 20 assert len(data.sweeps) == 20 assert data.sweeps[0].shape == (178, 510) assert data.kin is None
def test_calc_spe(): obj = Ta() obj.data = np.ones((5, 5)) obj._t = np.linspace(0, 4, 5) obj.calc_spe([2, 3.5]) assert list(obj.spe[0]) == [1] * len(obj._t) assert obj.spe_rng == [2, 3.5]
def test_t02(): obj = Ta() obj._t = np.linspace(-1, 9, 11) obj.t0 = 1 obj.set_t0(-5) assert (obj._t - np.linspace(4, 14, 11)).all() == 0 assert obj.t0 == -4
def test_t0(): obj = Ta() obj._t = np.linspace(0, 10, 11) obj.t0 = 0 obj.set_t0(1) assert (obj._t - np.linspace(-1, 9, 11)).all() == 0 assert obj.t0 == 1
def test_calc_kin(): obj = Ta() obj.data = np.ones((5, 5)) obj.wl = np.linspace(0, 4, 5) obj.calc_kin([2, 3.5]) assert list(obj.kin[0]) == [1] * len(obj.wl) assert obj.kin_rng == [2, 3.5]
def test_fastlab_import(): data = Ta(path_fastlab_data) assert data.data.shape == (126, 1024) assert len(data.probe) == 22 assert len(data.reference) == 22 assert len(data.sweeps) == 22 assert data.sweeps[0].shape == (126, 1024) assert data.n_sweeps == 22 assert data.wl_unit == 'nm' assert data.wl_high == 740 assert data.px_low == 258 assert data.t_unit == 'ns' assert data.n_shots == 1000 assert data.inc_sweeps == [1] * 22
def test_cut_t(): obj = Ta() obj.data = np.ones((10, 10)) obj._t = np.linspace(0, 9, 10) Ta.cut_t(obj, 2, 7) assert list(obj._t) == [2, 3, 4, 5, 6, 7]
def test_cut_wl(): obj = Ta() obj.data = np.ones((10, 10)) obj.wl = np.linspace(0, 9, 10) obj.cut_wl(2, 7) assert list(obj.wl) == [2, 3, 4, 5, 6, 7]
def test_rem_region(): obj = Ta() obj.data = np.ones((10, 10)).reshape(10, 10) obj.wl = np.linspace(0, 9, 10) obj.rem_region(2, 7) assert np.sum(obj.data, axis=(0, 1)) == 50
def test_rem_bg(): obj = Ta() obj.data = np.ones((10, 10)).reshape(10, 10) obj._t = np.linspace(0, 9, 10) obj.rem_bg(5) assert np.sum(obj.data, axis=(0, 1)) == 0
def test_invert_sweeps(): obj = Ta() obj.sweeps = [np.ones((5, 5)) * k for k in range(3)] obj.n_sweeps = len(obj.sweeps) obj.new_average([1, 1, 1]) obj.invert_sweeps([1, 1, 0]) assert list(obj.data.ravel()) == [1 / 3] * 25 obj.inc_sweeps = [1, 0, 1] obj.invert_sweeps([1, 1, 0]) assert list(obj.data.ravel()) == [1] * 25 obj.invert_sweeps([1, 1, 1]) assert list(obj.data.ravel()) == [-1] * 25