Esempio n. 1
0
def _run_inner(prefix, test_name, runs, g, c, args1, args2, args3, args4,
               args5, args6, args7, args8, args9):
    runner = TSPSRunner(g)
    add_solver(runner, args1, c, runs)
    add_solver(runner, args2, c, runs)
    add_solver(runner, args3, c, runs)
    add_solver(runner, args4, c, runs)
    add_solver(runner, args5, c, runs)
    add_solver(runner, args6, c, runs)
    add_solver(runner, args7, c, runs)
    add_solver(runner, args8, c, runs)
    add_solver(runner, args9, c, runs)
    runner.run()

    fig = GenericFig(size=120)
    result = TestRunResult(runner, fig, test_name + prefix, base_folder)

    def plot():
        result.averaged_x_values(args1.key, '-b')
        result.averaged_x_values(args2.key, red_color(0))
        result.averaged_x_values(args3.key, red_color(1))
        result.averaged_x_values(args4.key, red_color(2))
        result.averaged_x_values(args5.key, red_color(3))
        result.averaged_x_values(args6.key, red_color(4))
        result.averaged_x_values(args7.key, green_color(0))
        result.averaged_x_values(args8.key, green_color(2))
        result.averaged_x_values(args9.key, green_color(4))

    result.next_subplot(test_name)
    plot()
    result.legend()
    result.ylabel()
    result.next_log_subplot(u"(log skaleje)")
    plot()
    result.save()
Esempio n. 2
0
def run_base(cr):
    prefix = " mr = {}".format(cr)
    test_name = u"Rekombinacijos, mutacijos koef."
    runs = 10
    args1 = base_args(cr, 0.1)
    args2 = base_args(cr, 0.2)
    args3 = base_args(cr, 0.3)
    args4 = base_args(cr, 0.4)
    args5 = base_args(cr, 0.5)
    args6 = base_args(cr, 0.6)
    args7 = base_args(cr, 0.7)
    args8 = base_args(cr, 0.8)
    args9 = base_args(cr, 0.9)

    r = runner()
    add_solver(r, args1, c, runs)
    add_solver(r, args2, c, runs)
    add_solver(r, args3, c, runs)
    add_solver(r, args4, c, runs)
    add_solver(r, args5, c, runs)
    add_solver(r, args6, c, runs)
    add_solver(r, args7, c, runs)
    add_solver(r, args8, c, runs)
    add_solver(r, args9, c, runs)
    r.run()

    fig = GenericFig(size=120)
    result = TestRunResult(r, fig, test_name + prefix, base_folder)

    def plot():
        result.averaged_x_values(args1.key, 'r--')
        result.averaged_x_values(args2.key, red_color(0))
        result.averaged_x_values(args3.key, red_color(2))
        result.averaged_x_values(args4.key, red_color(4))
        result.averaged_x_values(args5.key, green_color(4))
        result.averaged_x_values(args6.key, green_color(2))
        result.averaged_x_values(args7.key, green_color(1))
        result.averaged_x_values(args8.key, green_color(0))
        result.averaged_x_values(args9.key, 'g--')

    result.next_subplot(test_name)
    plot()
    result.legend()
    result.ylabel()
    result.next_log_subplot(u"(log skaleje)")
    plot()
    result.save()
Esempio n. 3
0
def run_0():
    prefix = ""
    test_name = u"Chromosomos"
    runs = 10
    args1 = base_args(10)
    args2 = base_args(20)
    args3 = base_args(30)
    args4 = base_args(40)
    args5 = base_args(50)
    args6 = base_args(60)
    args7 = base_args(70)
    args8 = base_args(80)

    r = runner()
    add_solver(r, args1, c, runs)
    add_solver(r, args2, c, runs)
    add_solver(r, args3, c, runs)
    add_solver(r, args4, c, runs)
    add_solver(r, args5, c, runs)
    add_solver(r, args6, c, runs)
    add_solver(r, args7, c, runs)
    add_solver(r, args8, c, runs)
    r.run()

    fig = GenericFig(size=120)
    result = TestRunResult(r, fig, test_name + prefix, base_folder)

    def plot():
        result.averaged_x_values(args1.key, 'r--')
        result.averaged_x_values(args2.key, red_color(0))
        result.averaged_x_values(args3.key, red_color(2))
        result.averaged_x_values(args4.key, red_color(4))
        result.averaged_x_values(args5.key, green_color(4))
        result.averaged_x_values(args6.key, green_color(2))
        result.averaged_x_values(args7.key, green_color(0))
        result.averaged_x_values(args8.key, 'g--')

    result.next_subplot(test_name)
    plot()
    result.legend()
    result.ylabel()
    result.next_log_subplot(u"(log skaleje)")
    plot()
    result.save()
Esempio n. 4
0
def run_base(chrom):
    prefix = " chrom = {}".format(chrom)
    test_name = u"Pradine populiacija"
    runs = 10
    args1 = base_args(chrom, int(chrom / 8.0 * 1))
    args2 = base_args(chrom, int(chrom / 8.0 * 2))
    args3 = base_args(chrom, int(chrom / 8.0 * 3))
    args4 = base_args(chrom, int(chrom / 8.0 * 4))
    args5 = base_args(chrom, int(chrom / 8.0 * 5))
    args6 = base_args(chrom, int(chrom / 8.0 * 6))
    args7 = base_args(chrom, int(chrom / 8.0 * 7))
    args8 = base_args(chrom, int(chrom / 8.0 * 8))

    r = runner()
    add_solver(r, args1, c, runs)
    add_solver(r, args2, c, runs)
    add_solver(r, args3, c, runs)
    add_solver(r, args4, c, runs)
    add_solver(r, args5, c, runs)
    add_solver(r, args6, c, runs)
    add_solver(r, args7, c, runs)
    add_solver(r, args8, c, runs)
    r.run()

    fig = GenericFig(size=120)
    result = TestRunResult(r, fig, test_name + prefix, base_folder)

    def plot():
        result.averaged_x_values(args1.key, 'r--')
        result.averaged_x_values(args2.key, red_color(0))
        result.averaged_x_values(args3.key, red_color(2))
        result.averaged_x_values(args4.key, red_color(4))
        result.averaged_x_values(args5.key, green_color(4))
        result.averaged_x_values(args6.key, green_color(2))
        result.averaged_x_values(args7.key, green_color(0))
        result.averaged_x_values(args8.key, 'g--')

    result.next_subplot(test_name)
    plot()
    result.legend()
    result.ylabel()
    result.next_log_subplot(u"(log skaleje)")
    plot()
    result.save()
Esempio n. 5
0
def run_base(cr):
    prefix = " cr = {}".format(cr)
    test_name = u"Rekombinacijos koef., pradinė populiacija"
    runs = 10
    args1 = base_args(cr, 6)
    args2 = base_args(cr, 8)
    args3 = base_args(cr, 10)
    args4 = base_args(cr, 12)
    args5 = base_args(cr, 14)
    args6 = base_args(cr, 16)

    r = runner()
    add_solver(r, args1, c, runs)
    add_solver(r, args2, c, runs)
    add_solver(r, args3, c, runs)
    add_solver(r, args4, c, runs)
    add_solver(r, args5, c, runs)
    add_solver(r, args6, c, runs)
    r.run()

    fig = GenericFig(size=120)
    result = TestRunResult(r, fig, test_name + prefix, base_folder)

    def plot():
        result.averaged_x_values(args1.key, 'r--')
        result.averaged_x_values(args2.key, red_color(1))
        result.averaged_x_values(args3.key, red_color(4))
        result.averaged_x_values(args4.key, green_color(4))
        result.averaged_x_values(args5.key, green_color(1))
        result.averaged_x_values(args6.key, 'g--')

    result.next_subplot(test_name)
    plot()
    result.legend()
    result.ylabel()
    result.next_log_subplot(u"(log skaleje)")
    plot()
    result.save()
Esempio n. 6
0
def _genetic_acs_test_type_1_(graph, runs, ants, chromosomes, iterations,
                              ant_iterations=1, subf="a"):
    cities = len(graph.nodes())
    filename = str(cities) + "_genetic_acs_test"
    output_folder = base_folder + "1/" + subf

    c1 = cond()
    c1[CONDITION_GENERATION] = iterations

    c2 = cond()
    c2[CONDITION_GENERATION] = ant_iterations

    ap = {
        'beta': 30,
        'alpha': 0.1,
        'ro': 0.1,
        'tau0': 10
    }
    ap1 = deepcopy(ap)
    ap1['ants'] = ants
    acs1 = AntColonySystem(graph, ap1, c2, absolute_mute=True)
    ap2 = deepcopy(ap)
    ap2['ants'] = int(ants / 2)
    acs2 = AntColonySystem(graph, ap2, c2, absolute_mute=True)

    gp = {
        'chromosomes': chromosomes,
        'cr': 0.1,
        'mr': 0.5,
        'crossover_method': CROSSOVER_OX,
        'mutation_method': MUTATION_SWAP
    }

    gp11 = deepcopy(gp)
    gp11['selection_method'] = SELECTION_ROULETE
    gp11['use_acs'] = acs1
    gp12 = deepcopy(gp)
    gp12['selection_method'] = SELECTION_ROULETE
    gp12['use_acs'] = acs2
    gp13 = deepcopy(gp)
    gp13['selection_method'] = SELECTION_ROULETE

    gp21 = deepcopy(gp)
    gp21['selection_method'] = SELECTION_RANK
    gp21['use_acs'] = acs1
    gp22 = deepcopy(gp)
    gp22['selection_method'] = SELECTION_RANK
    gp22['use_acs'] = acs2
    gp23 = deepcopy(gp)
    gp23['selection_method'] = SELECTION_RANK

    runner = TSPSRunner(graph)
    runner.add_tsps(Genetic, gp11, c1, runs, 'ga-acs-1.0-roulete')
    runner.add_tsps(Genetic, gp12, c1, runs, 'ga-acs-0.5-roulete')
    runner.add_tsps(Genetic, gp13, c1, runs, 'ga-roulete')
    runner.add_tsps(Genetic, gp21, c1, runs, 'ga-acs-1.0-rank')
    runner.add_tsps(Genetic, gp22, c1, runs, 'ga-acs-0.5-rank')
    runner.add_tsps(Genetic, gp23, c1, runs, 'ga-rank')

    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA-ACS, miestu - " + str(cities) +
                     ", ant-iteration = " + str(ant_iterations) +
                     ",n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-roulete']
                                   ['all_distances'], line='r-',
                                   label='roulete_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-roulete']
                                   ['all_distances'], line='r--',
                                   label='roulete_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-roulete']
                                   ['all_distances'], line=':r',
                                   label='roulete')
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-rank']
                                   ['all_distances'], line='g-',
                                   label='rank_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-rank']
                                   ['all_distances'], line='g--',
                                   label='rank_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-rank']
                                   ['all_distances'], line=':g',
                                   label='rank')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot()
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-roulete']
                                   ['all_distances'], line='r-',
                                   label='roulete_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-roulete']
                                   ['all_distances'], line='r--',
                                   label='roulete_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-roulete']
                                   ['all_distances'], line=':r',
                                   label='roulete')
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-rank']
                                   ['all_distances'], line='g-',
                                   label='rank_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-rank']
                                   ['all_distances'], line='g--',
                                   label='rank_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-rank']
                                   ['all_distances'], line=':g',
                                   label='rank')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA-ACS, miestu - " + str(cities) +
                     ", ant-iteration = " + str(ant_iterations) +
                     ",n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-roulete']
                                   ['all_distances'], line='r-',
                                   label='roulete_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-roulete']
                                   ['all_distances'], line='r--',
                                   label='roulete_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-rank']
                                   ['all_distances'], line='g-',
                                   label='rank_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-rank']
                                   ['all_distances'], line='g--',
                                   label='rank_ants_' + str(ants / 2))
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot()
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-roulete']
                                   ['all_distances'], line='r-',
                                   label='roulete_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-roulete']
                                   ['all_distances'], line='r--',
                                   label='roulete_ants_' + str(ants / 2))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-1.0-rank']
                                   ['all_distances'], line='g-',
                                   label='rank_ants_' + str(ants))
    fig.add_averaged_x_plot_values(runner.results['ga-acs-0.5-rank']
                                   ['all_distances'], line='g--',
                                   label='rank_ants_' + str(ants / 2))
    fig.set_xscale('log')
    fig.save(filename=filename + "_b", output_folder=output_folder)
Esempio n. 7
0
def _acs_test_type_1_(graph, runs, base_pars, beta, antz, iters, subf="a"):
    cities = len(graph.nodes())
    filename = str(cities) + "_acs_test_1__args[" + str(beta) + "][" + str(
        base_pars['alpha']) + "][" + str(base_pars['ro']) + "]"
    output_folder = base_folder + "1/" + subf

    base_pars['beta'] = beta
    c1 = cond()
    c1[CONDITION_GENERATION] = iters
    ap1 = deepcopy(base_pars)
    ap1['ants'] = antz[0]

    c2 = cond()
    c2[CONDITION_GENERATION] = iters
    ap2 = deepcopy(base_pars)
    ap2['ants'] = antz[1]

    runner = TSPSRunner(graph)
    runner.add_tsps(AntColonySystem, ap1, c1, runs, 'acs-1')
    runner.add_tsps(AntColonySystem, ap2, c2, runs, 'acs-2')
    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("ACS, miestu - " + str(cities) + ", n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['acs-1']['all_distances'],
                                   line='r-',
                                   label="ants = " + str(antz[0]))
    fig.add_averaged_x_plot_values(runner.results['acs-2']['all_distances'],
                                   line='g-',
                                   label="ants = " + str(antz[1]))
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("ACS, miestu - " + str(cities) + ", n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['acs-1']['all_distances'],
                                   line='r-',
                                   label="ants = " + str(antz[0]))
    fig.add_averaged_x_plot_values(runner.results['acs-2']['all_distances'],
                                   line='g-',
                                   label="ants = " + str(antz[1]))
    fig.set_xscale('log')
    fig.save(filename=filename + "_a", output_folder=output_folder)
Esempio n. 8
0
def _genetic_acs_sa_test_type_1_(graph,
                                 runs,
                                 iterations,
                                 chromosomes,
                                 mr,
                                 selection,
                                 subf="a"):
    cities = len(graph.nodes())
    filename = str(cities) + "_genetic_acs_sa_test_1_" + selection
    output_folder = base_folder + "1/" + subf

    c0 = cond()
    c0[CONDITION_GENERATION] = iterations
    g0 = g_pars(chromosomes, selection, mr)

    c1, g1 = ga_pars(graph, iterations, chromosomes, selection, mr)

    runner = TSPSRunner(graph)
    runner.add_tsps(Genetic, g0, c0, runs, 'ga')
    runner.add_tsps(Genetic, g1, c1, runs, 'ga-acs-sa')

    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA-ACS-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['ga']['all_distances'],
                                   line='r-',
                                   label='ga')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa']['all_distances'],
        line='g-',
        label='ga-acs-sa')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("GA-ACS-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['ga']['all_distances'],
                                   line='r-',
                                   label='ga')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa']['all_distances'],
        line='g-',
        label='ga-acs-sa')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)
Esempio n. 9
0
def _genetic_acs_sa_test_type_2_(graph,
                                 runs,
                                 iterations,
                                 chromosomes,
                                 selection,
                                 subf="a"):
    cities = len(graph.nodes())
    filename = str(cities) + "_genetic_acs_sa_test_1_" + selection
    output_folder = base_folder + "2/" + subf

    c1, g1 = ga_pars(graph, iterations, chromosomes, selection, 0.01)
    c2, g2 = ga_pars(graph, iterations, chromosomes, selection, 0.5)
    c3, g3 = ga_pars(graph, iterations, chromosomes, selection, 0.99)

    runner = TSPSRunner(graph)
    runner.add_tsps(Genetic, g1, c1, runs, 'ga-acs-sa1')
    runner.add_tsps(Genetic, g2, c2, runs, 'ga-acs-sa2')
    runner.add_tsps(Genetic, g3, c3, runs, 'ga-acs-sa3')

    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA-ACS-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa1']['all_distances'],
        line='r-',
        label='mr-0.01')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa2']['all_distances'],
        line='g-',
        label='mr-0.5')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa3']['all_distances'],
        line='b-',
        label='mr-0.99')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("GA-ACS-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa1']['all_distances'],
        line='r-',
        label='mr-0.01')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa2']['all_distances'],
        line='g-',
        label='mr-0.5')
    fig.add_averaged_x_plot_values(
        runner.results['ga-acs-sa3']['all_distances'],
        line='b-',
        label='mr-0.99')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)
Esempio n. 10
0
def _sa_test_type_2_(graph, runs, decrement, no_progress):
    cities = len(graph.nodes())
    filename = str(cities) + "_sa_test_sa-1_" + \
        str(decrement) + "_no_progress_" + str(no_progress) + "_"
    output_folder = base_folder + "2"
    c = cond()
    c[CONDITION_NO_PROGRESS] = no_progress
    sp1 = {'initial_temp': 100, 'decrement': decrement}

    runner = TSPSRunner(graph)
    runner.add_tsps(SimulatedAnnealing, sp1, c, runs, 'sa-1')
    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)
    rez = 15
    xs, ys, zs, maxs = sh_to_contour_heatmap_scatter(
        runner.results['sa-1']['all_distances'], rez, True)
    fig = GenericFig()
    fig.next_subplot("SA, miestu - " + str(cities) + ", alpha = " +
                     str(decrement) + ", n = " + str(runs))
    fig.add_scatter_heatmap(xs, ys, zs, rez)
    fig.set_xlim(0, maxs[0])
    fig.save(filename=filename + "_a", output_folder=output_folder)

    fig = GenericFig()
    fig.next_subplot("SA, miestu - " + str(cities) + ", alpha = " +
                     str(decrement) + ", n = " + str(runs))
    fig.add_contour_heatmap(xs, ys, zs, rez)
    fig.save(filename=filename + "_b", output_folder=output_folder)
Esempio n. 11
0
def _sa_test_type_1_(graph, runs):
    cities = len(graph.nodes())
    filename = str(cities) + "_sa_test_sa-1"
    output_folder = base_folder + "1"
    c = cond()
    sp1 = {'initial_temp': 100, 'decrement': 0.99}
    sp2 = {'initial_temp': 100, 'decrement': 0.9999}

    runner = TSPSRunner(graph)
    runner.add_tsps(SimulatedAnnealing, sp1, c, runs, 'sa-1')
    runner.add_tsps(SimulatedAnnealing, sp2, c, runs, 'sa-2')
    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(size=120)
    fig.next_subplot("SA, miestu - " + str(cities) + ", n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['sa-1']['all_distances'],
                                   line='r-',
                                   label='decrement-0.99')
    fig.add_averaged_x_plot_values(runner.results['sa-2']['all_distances'],
                                   line='g-',
                                   label='decrement-0.9999')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("GA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['sa-1']['all_distances'],
                                   line='r-',
                                   label='decrement-0.99')
    fig.add_averaged_x_plot_values(runner.results['sa-2']['all_distances'],
                                   line='g-',
                                   label='decrement-0.9999')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)
Esempio n. 12
0
def _genetic_sa_test_type_1_(graph,
                             runs,
                             iterations,
                             chromosomes,
                             selection,
                             subf="a",
                             mr=0.5):
    cities = len(graph.nodes())
    filename = str(cities) + "_genetic_sa_test_1_" + selection
    output_folder = base_folder + "1/" + subf

    c = cond()
    c[CONDITION_GENERATION] = iterations
    gp1 = g_pars(chromosomes, MUTATION_SWAP, selection, mr)
    gp2 = g_pars(chromosomes, MUTATION_SA, selection, mr)
    gp3 = g_pars(chromosomes, MUTATION_SA_INSERT, selection, mr)
    gp4 = g_pars(chromosomes, MUTATION_SA_REVERSE, selection, mr)

    runner = TSPSRunner(graph)
    runner.add_tsps(Genetic, gp1, c, runs, 'm-swap')
    runner.add_tsps(Genetic, gp2, c, runs, 'm-sa')
    runner.add_tsps(Genetic, gp3, c, runs, 'm-sa-i')
    runner.add_tsps(Genetic, gp4, c, runs, 'm-sa-r')

    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['m-swap']['all_distances'],
                                   line='r-',
                                   label='m-swap')
    fig.add_averaged_x_plot_values(runner.results['m-sa']['all_distances'],
                                   line='g-',
                                   label='m-sa')
    fig.add_averaged_x_plot_values(runner.results['m-sa-i']['all_distances'],
                                   line='c-',
                                   label='m-sa-i')
    fig.add_averaged_x_plot_values(runner.results['m-sa-r']['all_distances'],
                                   line='y-',
                                   label='m-sa-r')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("GA-SA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['m-swap']['all_distances'],
                                   line='r-',
                                   label='m-swap')
    fig.add_averaged_x_plot_values(runner.results['m-sa']['all_distances'],
                                   line='g-',
                                   label='m-sa')
    fig.add_averaged_x_plot_values(runner.results['m-sa-i']['all_distances'],
                                   line='c-',
                                   label='m-sa-i')
    fig.add_averaged_x_plot_values(runner.results['m-sa-r']['all_distances'],
                                   line='y-',
                                   label='m-sa-r')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)
Esempio n. 13
0
def _genetic_test_type_1_(graph, runs, iterations, chromosomes,
                          subf="a", crmr=(0.9, 0.1)):
    cities = len(graph.nodes())
    filename = str(cities) + "_genetic_test_1_crmr[" + str(crmr) + "]_"
    output_folder = base_folder + "1/" + subf

    c = cond()
    c[CONDITION_GENERATION] = iterations
    gp1 = {
        'chromosomes': chromosomes,
        'cr': crmr[0],
        'mr': crmr[1],
        'selection_method': SELECTION_ROULETE,
        'crossover_method': CROSSOVER_ORDINAL_1P,
        'mutation_method': MUTATION_SWAP
    }
    gp2 = {
        'chromosomes': chromosomes,
        'cr': crmr[0],
        'mr': crmr[1],
        'selection_method': SELECTION_RANK,
        'crossover_method': CROSSOVER_ORDINAL_1P,
        'mutation_method': MUTATION_SWAP
    }
    gp3 = {
        'chromosomes': chromosomes,
        'cr': crmr[0],
        'mr': crmr[1],
        'selection_method': SELECTION_ROULETE,
        'crossover_method': CROSSOVER_OX,
        'mutation_method': MUTATION_SWAP
    }
    gp4 = {
        'chromosomes': chromosomes,
        'cr': crmr[0],
        'mr': crmr[1],
        'selection_method': SELECTION_RANK,
        'crossover_method': CROSSOVER_OX,
        'mutation_method': MUTATION_SWAP
    }

    runner = TSPSRunner(graph)
    runner.add_tsps(Genetic, gp1, c, runs, 'roulete-ordinal')
    runner.add_tsps(Genetic, gp2, c, runs, 'rank-ordinal')
    runner.add_tsps(Genetic, gp3, c, runs, 'roulete-ox')
    runner.add_tsps(Genetic, gp4, c, runs, 'rank-ox')

    runner.run()
    runner.save_results(filename=filename, output_folder=output_folder)

    fig = GenericFig(ylabel="Vidutinis atstumas", size=120)
    fig.next_subplot("GA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['roulete-ordinal']
                                   ['all_distances'], line='r-',
                                   label='roulete-ordinal')
    fig.add_averaged_x_plot_values(runner.results['rank-ordinal']
                                   ['all_distances'], line='g-',
                                   label='rank-ordinal')
    fig.add_averaged_x_plot_values(runner.results['roulete-ox']
                                   ['all_distances'], line='c-',
                                   label='roulete-ox')
    fig.add_averaged_x_plot_values(runner.results['rank-ox']
                                   ['all_distances'], line='y-',
                                   label='rank-ox')
    fig.set_legend()
    fig.set_ylabel('')
    fig.next_subplot("GA, " + str(cities) + " miestu, n = " + str(runs))
    fig.add_averaged_x_plot_values(runner.results['roulete-ordinal']
                                   ['all_distances'], line='r-',
                                   label='roulete-ordinal')
    fig.add_averaged_x_plot_values(runner.results['rank-ordinal']
                                   ['all_distances'], line='g-',
                                   label='rank-ordinal')
    fig.add_averaged_x_plot_values(runner.results['roulete-ox']
                                   ['all_distances'], line='c-',
                                   label='roulete-ox')
    fig.add_averaged_x_plot_values(runner.results['rank-ox']
                                   ['all_distances'], line='y-',
                                   label='rank-ox')
    fig.set_xscale('log')
    fig.save(filename=filename, output_folder=output_folder)