Esempio n. 1
0
# Create the kernel
kernel = create_kernel(dx,
                       lx,
                       dy,
                       ly,
                       sigma_surround,
                       sigma_center,
                       dt_kernel,
                       kernel_size,
                       inverse=1,
                       x_tra=xc,
                       y_tra=yc)

# Calculate the firing rate
for index in signal_indexes:
    firing_rate[index] = convolution(index, kernel_times, delay_indexes,
                                     stimuli_indexes, kernel, stimuli)

firing_rate += 10  # Add background noise
# Rectify the firing rate
firing_rate[firing_rate < 0] = 0

remove_start = int(kernel_size * dt_kernel)
visualize_firing_rate(firing_rate[signal_indexes],
                      dt,
                      T_simulation - remove_start,
                      label='Firing rate')
#visualize_firing_rate(firing_rate / np.max(firing_rate), dt, T_simulation, label='Firing rate')

# Produce spikes with the signal
spike_times_thin = produce_spikes(firing_rate, dt, T_simulation, remove_start)
spike_times_thin -= remove_start
stimuli2 = sine_grating(dx, lx, dy, ly, A2, K, Phi, Theta, dt_stimuli, N_stimuli, w)

# Chose the particular cell
xc = 0
yc = 0 

# Create the kernels
kernel_on = create_kernel(dx, lx, dy, ly, sigma_surround, sigma_center,
                          dt_kernel, kernel_size, inverse=1, x_tra=0, y_tra=0)
kernel_off = create_kernel(dx, lx, dy, ly, sigma_surround, sigma_center,
                           dt_kernel, kernel_size, inverse=-1, x_tra=0, y_tra=0)

# Calculate the firing rate through convolution

for index in signal_indexes:
    firing_rate_on1[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_on, stimuli1)

for index in signal_indexes:
    firing_rate_off1[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_off, stimuli1)

for index in signal_indexes:
    firing_rate_on2[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_on, stimuli2)

for index in signal_indexes:
    firing_rate_off2[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_off, stimuli2)

# Add background noise 
on_noise = 10  # Hz
off_noise = 15  # Hz

firing_rate_on1 += on_noise
        xc = x
        yc = y

        positions.append((x,y))

        # Create the kernel
        kernel = create_kernel(dx, lx, dy, ly, sigma_surround, sigma_center,
                               dt_kernel, kernel_size, inverse=on_off_cells, x_tra=xc, y_tra=yc)
        
        # Initialize the signal array to be filled 
        firing_rate = np.zeros(Nt_simulation)

        # Calculate the firing rate
        for index in signal_indexes:
            firing_rate[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel, stimuli)

        firing_rate += 10  # Add background noise
        # Rectify the firing rate
        firing_rate[firing_rate < 0] = 0
                
        # Produce spikes with the signal
        spike_times_thin = produce_spikes(firing_rate, dt, T_simulation, remove_start, 60.0)
        spike_times_thin -= remove_start # Translate the spikes to the origin  
        spike_train.append(spike_times_thin)
        
        # Count the spikes in the cell 
        number_of_spikes_array[counter1, counter2] = len(spike_times_thin)
        print 'counters 1, 2=', counter1, counter2
        counter1 += 1
        
# Create the stimuli 
# stimuli = ternary_noise(N_stimuli, int(lx /dx), int(ly/dt))
stimuli = sine_grating(dx, lx, dy, ly, A, K, Phi, Theta, dt_stimuli, N_stimuli, w)

# Chose the particular cell 
xc = 0
yc = 0 

# Create the kernel 
kernel_on = create_kernel(dx, lx, dy, ly, sigma_surround, sigma_center, dt_kernel, kernel_size, inverse=1, x_tra=0, y_tra=0)
kernel_off = create_kernel(dx, lx, dy, ly, sigma_surround, sigma_center, dt_kernel, kernel_size, inverse=-1, x_tra=0, y_tra=0)

# Calculate the firing rate 
for index in signal_indexes:
    firing_rate_on[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_on, stimuli)

for index in signal_indexes:
    firing_rate_off[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_off, stimuli)

# Add background noise 
on_noise = 10  # Hz
off_noise = 15  # HZ

firing_rate_on += on_noise
firing_rate_off += off_noise

# Rectify firing rates 
firing_rate_on[firing_rate_on < 0] = 0
firing_rate_off[firing_rate_off < 0] = 0
                          y_tra=0)
kernel_off = create_kernel(dx,
                           lx,
                           dy,
                           ly,
                           sigma_surround,
                           sigma_center,
                           dt_kernel,
                           kernel_size,
                           inverse=-1,
                           x_tra=0,
                           y_tra=0)

# Calculate the firing rate
for index in signal_indexes:
    firing_rate_on[index] = convolution(index, kernel_times, delay_indexes,
                                        stimuli_indexes, kernel_on, stimuli)

for index in signal_indexes:
    firing_rate_off[index] = convolution(index, kernel_times, delay_indexes,
                                         stimuli_indexes, kernel_off, stimuli)

# Add background noise
on_noise = 10  # Hz
off_noise = 15  # HZ

firing_rate_on += on_noise
firing_rate_off += off_noise

# Rectify firing rates
firing_rate_on[firing_rate_on < 0] = 0
firing_rate_off[firing_rate_off < 0] = 0
Esempio n. 6
0
N_stimuli = int(T_simulation / dt_stimuli)  # Number of stimuli points

# And now the spatial parameters of the sinus grating
K = 0.8  # Cycles per degree
Phi = 0
Theta = 0
max_contrast = 2.0 * 2
contrast = 0.5  # Percentage
A = contrast * max_contrast
# Temporal frequency of sine grating
w = 3  # Hz

stimuli = sine_grating(dx, lx, dy, ly, A, K, Phi, Theta, dt_stimuli, N_stimuli, w)


## Now we can do the convolution

# First we define the necessary indexes to the convolution
signal_indexes, delay_indexes, stimuli_indexes = create_standar_indexes(dt, dt_kernel, dt_stimuli, kernel_size, Nt_simulation)
working_indexes, kernel_times = create_extra_indexes(kernel_size, Nt_simulation)

# Now we calculate the signal
signal = np.zeros(Nt_simulation)

for index in signal_indexes:
    signal[index] = convolution(index, kernel_times, delay_indexes, stimuli_indexes, kernel_on, stimuli)

#Plot the signal
t = np.arange(kernel_size*dt_kernel, T_simulation, dt)
plt.plot(t, signal[signal_indexes])
plt.show()
Esempio n. 7
0
kernel_off = create_kernel(dx,
                           lx,
                           dy,
                           ly,
                           sigma_surround,
                           sigma_center,
                           dt_kernel,
                           kernel_size,
                           inverse=-1,
                           x_tra=0,
                           y_tra=0)

# Calculate the firing rate through convolution

for index in signal_indexes:
    firing_rate_on1[index] = convolution(index, kernel_times, delay_indexes,
                                         stimuli_indexes, kernel_on, stimuli1)

for index in signal_indexes:
    firing_rate_off1[index] = convolution(index, kernel_times, delay_indexes,
                                          stimuli_indexes, kernel_off,
                                          stimuli1)

for index in signal_indexes:
    firing_rate_on2[index] = convolution(index, kernel_times, delay_indexes,
                                         stimuli_indexes, kernel_on, stimuli2)

for index in signal_indexes:
    firing_rate_off2[index] = convolution(index, kernel_times, delay_indexes,
                                          stimuli_indexes, kernel_off,
                                          stimuli2)
                                         x_tra=xc[xi] + dx / 5,
                                         y_tra=yc[yj] + dy / 5)
        '''plt.figure(5)
		plt.subplot(2,2,1)	
		plt.imshow(kernelON[n,0,...],extent=[-lx/2,lx/2,ly/2,-ly/2])
		plt.subplot(2,2,2)
		plt.imshow(stimuli[0,...],extent=[-lx/2,lx/2,ly/2,-ly/2])
		plt.subplot(2,2,3)
		plt.imshow(kernelOFF[n,0,...],extent=[-lx/2,lx/2,ly/2,-ly/2])
		plt.show()
		'''
        # Calculate the firing rate
        for index in signal_indexes:
            firing_rate_ON[index,
                           n] = convolution(index, kernel_times, delay_indexes,
                                            stimuli_indexes, kernelON[n, ...],
                                            stimuli)
            firing_rate_OFF[index,
                            n] = convolution(index, kernel_times,
                                             delay_indexes, stimuli_indexes,
                                             kernelOFF[n, ...], stimuli)

        firing_rate_ON[:, n] += 10  # Add background noise
        # Rectify the firing rate
        firing_rate_ON[firing_rate_ON[:, n] < 0, n] = 0
        firing_rate_OFF[:, n] += 10  # Add background noise
        # Rectify the firing rate
        firing_rate_OFF[firing_rate_OFF[:, n] < 0, n] = 0
        n += 1

remove_start = int(kernel_size * dt_kernel)