'dimensions': {'X': {'range': (149.0699, 149.152)}, 'Y': {'range': (-35.3117, -35.2842)}, #'T': {'range': (start_date, end_date), # 'array_range': (0, 4) #'crs': 'SSE', # Seconds since epoch #'grouping_function': g.null_grouping # } } } # In[]: arrays = a.createArray('LS5TM', ['B20', 'B30'], data_request_descriptor['dimensions'], 'get_data') ndvi = a.applyBandMath(arrays, '((array1 + array2)/2.0)', 'ndvi') pq_data = a.createArray('LS5TMPQ', ['PQ'], data_request_descriptor['dimensions'], 'pq_data') mask = a.applyCloudMask(ndvi, pq_data, 'mask') result = e.executePlan(a.plan) # In[6]: #d = g.get_data(data_request_descriptor) #print "d shape: " , d['arrays']['B40'].shape #plotContourf(d, 'B30') #plotImages(d['arrays']['B30']) # In[ ]: # In[ ]: my_data1 = Data(label='LS5TM') #my_data1.add_component(d['arrays']['B20'], label='B20')
# -*- coding: utf-8 -*- """ Created on Tue Jul 14 15:28:43 2015 @author: """ from pprint import pprint from datetime import datetime from analytics import Analytics from execution_engine import ExecutionEngine from analytics_utils import plot a = Analytics() e = ExecutionEngine() dimensions = {'X': {'range': (147.968, 148.032)}, 'Y': {'range': (-36.032, -35.968)}, 'T': {'range': (1262304000.0, 1325375999.999999)}, } arrays = a.createArray('LS5TM', ['B40', 'B30'], dimensions, 'get_data') ndvi = a.applyBandMath(arrays, '((array1 - array2) / (array1 + array2))', 'ndvi') arrays2 = a.createArray('LS5TM', ['B40', 'B30'], dimensions, 'get_data2') ndvi2 = a.applyBandMath(arrays2, '((array1 - 2.0*array2) / (array2))', 'ndvi2') average = a.applyBandMath([ndvi, ndvi2], '((array1 + array2) / 2)', 'average') pq_data = a.createArray('LS5TMPQ', ['PQ'], dimensions, 'pq_data') mask = a.applyCloudMask(average, pq_data, 'mask') median_t = a.applyGenericReduction(mask, ['T'], 'median(array1)', 'medianT') result = e.executePlan(a.plan) plot(e.cache['medianT'])
# -*- coding: utf-8 -*- """ Created on Tue Jul 14 15:11:59 2015 @author: woo409 """ from pprint import pprint from datetime import datetime from analytics import Analytics from execution_engine import ExecutionEngine from analytics_utils import plot a = Analytics() e = ExecutionEngine() dimensions = {'X': {'range': (147.968, 148.032)}, 'Y': {'range': (-36.032, -35.968)}, 'T': {'range': (1262304000.0, 1325375999.999999)}, } arrays = a.createArray('LS5TM', ['B40'], dimensions, 'get_data') pq_data = a.createArray('LS5TMPQ', ['PQ'], dimensions, 'pq_data') mask = a.applyCloudMask(arrays, pq_data, 'mask') result = e.executePlan(a.plan) plot(e.cache['mask'])