Esempio n. 1
0
def gen_primes_con(k):
    """Only yield if prime p = k mod 4"""
    i = 1
    while True:
        if i % 4 == k and analyze.pprime(i):
            yield i
        i += 1
Esempio n. 2
0
def init_primes():
    for i in xrange(3, MAX, 2):
        if analyze.pprime(i):
            if i % 4 == 1:
                gPrimes1.append(i)
            else:
                gPrimes3.append(i)
Esempio n. 3
0
def get_in_range(length):
    numbers = []
    for i in range(1, length + 1):
        numbers.append(i)
    for perm in permutations(numbers):
        joined = ''.join([str(x) for x in perm])
        if pprime(int(joined)):
            yield joined
Esempio n. 4
0
def is_goldbach(num):
    for tsquare in gen_tsquare():
        if tsquare > num:
            break
        if pprime(num - tsquare):
            return True
    else:
        return False
Esempio n. 5
0
def next_sexy_foursome(begin):
    n = begin
    done = False

    while not done:
        tests = [n - 9, n - 3, n + 3, n + 9]
        for test in tests:
            if not pprime(test):
                n += 1
                break
        else:
            done = True

        if done:
            new_tests = [n - 7, n - 5, n - 1, n + 1, n + 5, n + 7]
            for test in new_tests:
                if pprime(test):
                    done = False
                    n += 1
                    break

    return n
Esempio n. 6
0
def gen_primes(n):
    for i in range(1, n, 2):
        if analyze.pprime(i):
            yield i
Esempio n. 7
0
from analyze import pprime

def gen_tsquare():
    i = 1
    while True:
        yield 2 * (i ** 2)
        i += 1

def is_goldbach(num):
    for tsquare in gen_tsquare():
        if tsquare > num:
            break
        if pprime(num - tsquare):
            return True
    else:
        return False

if __name__ == '__main__':
    i = 3
    while True:
        if not pprime(i) and not is_goldbach(i):
            print i
            break
        i += 2