Esempio n. 1
0
        dDot.exportData(dataFolder + '/Run_' + str(runNum) + '.txt', 'data3',
                        i + 1)
        runNum += 1

    print "Subsequent " + str(len(order)) + " runs: ", time() - startTime

    #Generate CODA capacitive Matrix

    codaDataFolder = currentIterationFolder + '/CODA_data'

    if not os.path.exists(codaDataFolder):
        os.makedirs(codaDataFolder)
    outputFile = open(codaDataFolder + '/CODA_data.txt', 'w')

    for i in range(len(order) + 1):
        density, ts = analyzeDataFile(dataFolder + '/Run_' + str(i) + '.txt')
        outputVolts = currentVolts
        if i > 0:
            outputVolts[i - 1] += 0.001
        outputFile.write(
            str(outputVolts + density.tolist() + ts.tolist()).replace(
                ',', '').replace(']', '').replace('[', '') + ' \n')
        if i > 0:
            outputVolts[i - 1] -= 0.001
    outputFile.close()

    #Run CODA, select certain solutions
    plot, voltageChanges = l1ErrorPlot(codaDataFolder + '/CODA_data.txt',
                                       target)
    numTries = 10
Esempio n. 2
0
        #Generate base COMSOL data
        dataFolder = currentIterationFolder + '/COMSOL_data'

        #Run CODA, select certain solutions
        voltageChanges, totalDistance = findDirection(
            codaDataFolder + '/CODA_data.txt', target)
        solutionL2Norm = norm(voltageChanges, ord=2)
        paramMat = []
        convergenceData = [[], []]

        minDistance = 10.
        runNum = 16
        for alpha in logspace(-5, 0, 11):

            convergenceData[0] += [alpha * solutionL2Norm]
            density, ts = analyzeDataFile(dataFolder + '/Run_' + str(runNum) +
                                          '.txt')
            predictedDeps = predictDeps(codaDataFolder + '/CODA_data.txt',
                                        alpha * voltageChanges)
            differenceFromLinear = abs(density[0:2] -
                                       predictedDeps[0:2]).tolist()
            print alpha, density[0:2], predictedDeps[0:2]
            print alpha, array(map(log, ts)), predictedDeps[2:]
            differenceFromLinear += (
                0.5 * abs(array(map(log, ts)) - predictedDeps[2:])).tolist()
            differenceFromLinearNorm = norm(array(differenceFromLinear), ord=2)
            convergenceData[1] += [differenceFromLinearNorm / totalDistance]
            runNum += 1

        if plotL1:
            import matplotlib
            matplotlib.use('Agg')
Esempio n. 3
0
    dDot.runSimulation('std2')

    for i in range(numTries[index]):
        dDot.exportData(
            dataFolder + '/Height_' + str(height) + '/Run_' + str(runNum) +
            '.txt', 'data3', i + 1)
        runNum += 1

    print "Subsequent " + str(numTries[index]) + " runs: ", time() - startTime

for index, heightParams in enumerate(params):
    convergenceData = [[], []]
    for i, dataIndex in enumerate(dataIndecesUsed[index]):
        convergenceData[0] += [data[index][0][dataIndex]]
        density, ts = analyzeDataFile(dataFolder + '/Height_' +
                                      str(heightParams[0]) + '/Run_' +
                                      str(i + 1) + '.txt')
        print convergenceData[0][-1], density, ts
        pointDistance = sum(abs(density[0:2] - target[0:2]))
        pointDistance += sum(
            abs(array(map(log, ts)) - array(map(log, target[4:]))))
        convergenceData[1] += [
            pointDistance * data[index][2][dataIndex] /
            data[index][1][dataIndex]
        ]
    plt.cla()
    plt.clf()

    plt.plot(data[index][0], data[index][2], linewidth=2.)
    plt.plot(convergenceData[0], convergenceData[1], 's--', linewidth=2.)
    labels = ['Predicted Error', 'Actual Error']