Esempio n. 1
0
    def __init__(self,
                 num_classes=80,
                 confidence_threshold=0.05,
                 nms_iou_threshold=0.5,
                 max_detections_per_class=100,
                 max_detections=100,
                 box_variance=[0.1, 0.1, 0.2, 0.2],
                 **kwargs):
        super(DecodePredictions, self).__init__(**kwargs)
        self.num_classes = num_classes
        self.confidence_threshold = confidence_threshold
        self.nms_iou_threshold = nms_iou_threshold
        self.max_detections_per_class = max_detections_per_class
        self.max_detections = max_detections

        self._anchor_box = AnchorBox()
        self._box_variance = tf.convert_to_tensor([0.1, 0.1, 0.2, 0.2],
                                                  dtype=tf.float32)
Esempio n. 2
0
def build_decoding_layer(
    num_classes=2,
    confidence_threshold=0.05,
    nms_iou_threshold=0.5,
    max_detections_per_class=100,
    max_detections=100,
    box_variance=[0.1, 0.1, 0.2, 0.2],
):
    """Decodes predictions of the RetinaNet model.

    Args:
        num_classes: Number of classes in the dataset
        confidence_threshold: Minimum class probability, below which detections
            are pruned.
        nms_iou_threshold: IOU threshold for the NMS operation
        max_detections_per_class: Maximum number of detections to retain per
        class.
        max_detections: Maximum number of detections to retain across all
            classes.
        box_variance: The scaling factors used to scale the bounding box
            predictions.
    """
    _anchor_box = AnchorBox()
    _box_variance = tf.convert_to_tensor([0.1, 0.1, 0.2, 0.2],
                                         dtype=tf.float32)

    def _decode_box_predictions(anchor_boxes, box_predictions):
        boxes = box_predictions * _box_variance
        boxes = tf.concat([
            boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2],
            tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:]
        ],
                          axis=-1)
        boxes_transformed = convert_to_corners(boxes)

        return boxes_transformed

    def forward(images, predictions):
        image_shape = tf.cast(tf.shape(images), dtype=tf.float32)
        anchor_boxes = _anchor_box.get_anchors(image_shape[1], image_shape[2])
        box_predictions = predictions[:, :, :4]
        cls_predictions = tf.nn.sigmoid(predictions[:, :, 4:])
        boxes = _decode_box_predictions(anchor_boxes[None, ...],
                                        box_predictions)

        return tf.image.combined_non_max_suppression(tf.expand_dims(boxes,
                                                                    axis=2),
                                                     cls_predictions,
                                                     max_detections_per_class,
                                                     max_detections,
                                                     nms_iou_threshold,
                                                     confidence_threshold,
                                                     clip_boxes=False)

    return forward
Esempio n. 3
0
 def __init__(self):
     self._anchor_box = AnchorBox()
     self._box_variance = tf.convert_to_tensor([0.1, 0.1, 0.2, 0.2],
                                               dtype=tf.float32)
Esempio n. 4
0
class LabelEncoder:
    """Transforms the raw labels into targets for training.

    This class has operations to generate targets for a batch of samples which
    is made up of the input images, bounding boxes for the objects present and
    their class ids.

    Attributes:
        anchor_box: Anchor box generator to encode the bounding boxes.
        box_variance: The scaling factors used to scale the bounding box targets.
    """
    def __init__(self):
        self._anchor_box = AnchorBox()
        self._box_variance = tf.convert_to_tensor([0.1, 0.1, 0.2, 0.2],
                                                  dtype=tf.float32)

    def _match_anchor_boxes(self,
                            anchor_boxes,
                            gt_boxes,
                            match_iou=0.5,
                            ignore_iou=0.4):
        """Matches ground truth boxes to anchor boxes based on IOU.

        1. Calculates the pairwise IOU for the M `anchor_boxes` and N `gt_boxes`
            to get a `(M, N)` shaped matrix.
        2. The ground truth box with the maximum IOU in each row is assigned to
            the anchor box provided the IOU is greater than `match_iou`.
        3. If the maximum IOU in a row is less than `ignore_iou`, the anchor
            box is assigned with the background class.
        4. The remaining anchor boxes that do not have any class assigned are
            ignored during training.

        Arguments:
            anchor_boxes: A float tensor with the shape `(total_anchors, 4)`
                representing all the anchor boxes for a given input image shape,
                where each anchor box is of the format `[x, y, width, height]`.
            gt_boxes: A float tensor with shape `(num_objects, 4)` representing
                the ground truth boxes, where each box is of the format
                `[x, y, width, height]`.
            match_iou: A float value representing the minimum IOU threshold for
                determining if a ground truth box can be assigned to an anchor box.
            ignore_iou: A float value representing the IOU threshold under which
                an anchor box is assigned to the background class.

        Returns:
            matched_gt_idx: Index of the matched object
            positive_mask: A mask for anchor boxes that have been assigned ground
                truth boxes.
            ignore_mask: A mask for anchor boxes that need to by ignored during
                training
        """
        iou_matrix = compute_iou(anchor_boxes, gt_boxes)
        max_iou = tf.reduce_max(iou_matrix, axis=1)
        matched_gt_idx = tf.argmax(iou_matrix, axis=1)
        positive_mask = tf.greater_equal(max_iou, match_iou)
        negative_mask = tf.less(max_iou, ignore_iou)
        ignore_mask = tf.logical_not(
            tf.logical_or(positive_mask, negative_mask))

        return (matched_gt_idx, tf.cast(positive_mask, dtype=tf.float32),
                tf.cast(ignore_mask, dtype=tf.float32))

    def _compute_box_target(self, anchor_boxes, matched_gt_boxes):
        """Transforms the ground truth boxes into targets for training"""
        box_target = tf.concat([
            (matched_gt_boxes[:, :2] - anchor_boxes[:, :2]) /
            anchor_boxes[:, 2:],
            tf.math.log(matched_gt_boxes[:, 2:] / anchor_boxes[:, 2:]),
        ],
                               axis=-1)
        box_target = box_target / self._box_variance

        return box_target

    def _encode_sample(self, image_shape, gt_boxes, cls_ids):
        """Creates box and classification targets for a single sample"""
        anchor_boxes = self._anchor_box.get_anchors(image_shape[1],
                                                    image_shape[2])
        cls_ids = tf.cast(cls_ids, dtype=tf.float32)
        matched_gt_idx, positive_mask, ignore_mask = self._match_anchor_boxes(
            anchor_boxes, gt_boxes)
        matched_gt_boxes = tf.gather(gt_boxes, matched_gt_idx)
        box_target = self._compute_box_target(anchor_boxes, matched_gt_boxes)
        matched_gt_cls_ids = tf.gather(cls_ids, matched_gt_idx)
        cls_target = tf.where(tf.not_equal(positive_mask, 1.0), -1.0,
                              matched_gt_cls_ids)
        cls_target = tf.where(tf.equal(ignore_mask, 1.0), -2.0, cls_target)
        cls_target = tf.expand_dims(cls_target, axis=-1)
        label = tf.concat([box_target, cls_target], axis=-1)

        return label

    def encode_batch(self, batch_images, gt_boxes, cls_ids):
        """Creates box and classification targets for a batch"""
        images_shape = tf.shape(batch_images)
        batch_size = images_shape[0]

        labels = tf.TensorArray(dtype=tf.float32,
                                size=batch_size,
                                dynamic_size=True)
        for i in range(batch_size):
            label = self._encode_sample(images_shape, gt_boxes[i], cls_ids[i])
            labels = labels.write(i, label)
        batch_images = tf.keras.applications.resnet.preprocess_input(
            batch_images)
        return batch_images, labels.stack()
Esempio n. 5
0
class DecodePredictions(tf.keras.layers.Layer):
    """A Keras layer that decodes predictions of the RetinaNet model.

    Attributes:
      num_classes: Number of classes in the dataset
      confidence_threshold: Minimum class probability, below which detections
        are pruned.
      nms_iou_threshold: IOU threshold for the NMS operation
      max_detections_per_class: Maximum number of detections to retain per
       class.
      max_detections: Maximum number of detections to retain across all
        classes.
      box_variance: The scaling factors used to scale the bounding box
        predictions.
    """
    def __init__(self,
                 num_classes=80,
                 confidence_threshold=0.05,
                 nms_iou_threshold=0.5,
                 max_detections_per_class=100,
                 max_detections=100,
                 box_variance=[0.1, 0.1, 0.2, 0.2],
                 **kwargs):
        super(DecodePredictions, self).__init__(**kwargs)
        self.num_classes = num_classes
        self.confidence_threshold = confidence_threshold
        self.nms_iou_threshold = nms_iou_threshold
        self.max_detections_per_class = max_detections_per_class
        self.max_detections = max_detections

        self._anchor_box = AnchorBox()
        self._box_variance = tf.convert_to_tensor([0.1, 0.1, 0.2, 0.2],
                                                  dtype=tf.float32)

    def _decode_box_predictions(self, anchor_boxes, box_predictions):
        boxes = box_predictions * self._box_variance
        boxes = tf.concat(
            [
                boxes[:, :, :2] * anchor_boxes[:, :, 2:] +
                anchor_boxes[:, :, :2],
                tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:],
            ],
            axis=-1,
        )
        boxes_transformed = convert_to_corners(boxes)
        return boxes_transformed

    def call(self, images, predictions):
        image_shape = tf.cast(tf.shape(images), dtype=tf.float32)
        anchor_boxes = self._anchor_box.get_anchors(image_shape[1],
                                                    image_shape[2])
        box_predictions = predictions[:, :, :4]
        cls_predictions = tf.nn.sigmoid(predictions[:, :, 4:])
        boxes = self._decode_box_predictions(anchor_boxes[None, ...],
                                             box_predictions)

        return tf.image.combined_non_max_suppression(
            tf.expand_dims(boxes, axis=2),
            cls_predictions,
            self.max_detections_per_class,
            self.max_detections,
            self.nms_iou_threshold,
            self.confidence_threshold,
            clip_boxes=False,
        )