async def anonymize(piis: List[Pii], config: AnonymizerConfig): anonymizer = Anonymizer(config) try: anonymized_piis = [ AnonymizedPii(text=pii.text, id=pii.id) for pii in anonymizer.anonymize(piis) if pii.modified ] except ParserError: raise HTTPException(status_code=400, detail="Error parsing a pii") if len(anonymized_piis) != len(piis): # one or more piis were not flagged as `modified` logger.error( f"Invalid config (anonymized_piis={anonymized_piis}; piis={piis}") raise HTTPException(status_code=400, detail="Invalid Config") return AnonymizedPiisResponse(anonymized_piis=anonymized_piis)
def generate_data(): try: generate_data = pd.DataFrame() rows = int(request.form.get('num_rows')) anonymize_data = Anonymizer() fake_names, fake_first_names, fake_second_names = anonymize_data.fake_name_generator( rows) generate_data['name'] = fake_names generate_data['first_name'] = fake_first_names generate_data['last_name'] = fake_second_names generate_data['city'] = anonymize_data.get_fake_cities(rows) generate_data['country'] = anonymize_data.get_fake_countries(rows) generate_data['street_address'] = anonymize_data.get_fake_addresses( rows) generate_data['url'] = anonymize_data.get_fake_uris(rows) generate_data.to_csv('static/generated_data.csv', sep='|', index=None, header=True) flash('File successfully generated') return render_template('index.html', path_generated_data='static/generated_data.csv') except: return render_template('index.html')
def anonymize(): try: global filepath data = pd.read_csv(filepath, sep='|') rows, c = data.shape selected_name = request.form.get('options_name') selected_city = request.form.get('options_city') selected_country = request.form.get('options_country') selected_address = request.form.get('options_address') selected_url = request.form.get('options_uri') anonymize_data = Anonymizer() if selected_name != 'None': fake_names, fake_first_names, fake_second_names = anonymize_data.fake_name_generator( rows) data[str(selected_name)] = fake_names if selected_city != 'None': data[str(selected_city)] = anonymize_data.get_fake_cities(rows) if selected_country != 'None': data[str(selected_country)] = anonymize_data.get_fake_countries( rows) if selected_address != 'None': data[str(selected_address)] = anonymize_data.get_fake_addresses( rows) if selected_url != 'None': data[str(selected_url)] = anonymize_data.get_fake_uris(rows) data.to_csv('static/export_data.csv', sep='|', index=None, header=True) flash('File successfully anonymized') return render_template('index.html', path_anonymize='static/export_data.csv') except: return render_template('index.html')
def main(input_path, image_output_path, weights_path, image_extensions, face_threshold, plate_threshold, write_json, obfuscation_parameters): download_weights(download_directory=weights_path) kernel_size, sigma, box_kernel_size = obfuscation_parameters.split(',') obfuscator = Obfuscator(kernel_size=int(kernel_size), sigma=float(sigma), box_kernel_size=int(box_kernel_size)) detectors = { 'face': Detector(kind='face', weights_path=get_weights_path(weights_path, kind='face')), 'plate': Detector(kind='plate', weights_path=get_weights_path(weights_path, kind='plate')) } detection_thresholds = {'face': face_threshold, 'plate': plate_threshold} anonymizer = Anonymizer(obfuscator=obfuscator, detectors=detectors) anonymizer.anonymize_images(input_path=input_path, output_path=image_output_path, detection_thresholds=detection_thresholds, file_types=image_extensions.split(','), write_json=write_json)
def get_structured_data(): inputText = request.form['inputText'] print(inputText) anonymize_data = Anonymizer() anonymizedText = anonymize_data.get_anonymize_text(inputText) return jsonify({"status": "success", "response": anonymizedText})
def anonymize(consumer): cache = deque() for msg in consumer: print(msg) cache.append(msg) if len(cache) > CACHE_SIZE: output = anonymizer.process([{**msg.value} for msg in cache]) if isinstance(output, list): for _ in output: yield _ else: yield output CACHE_SIZE = 5 anonymizer = Anonymizer({ "drop": { "keys": ["something-unimportant"] }, "mean": { "keys": ["some-number"] } }) for anon_msg in anonymize(consumer): producer.send( "anon", anon_msg.value if hasattr(anon_msg, "value") else str(anon_msg).encode())
for line in file.readlines(): #print(line) line = line.strip() # Guarding against erroneous leading and trailing whitespaces if startsWithDateTime(line): # If a line starts with a Date Time pattern, then this indicates the beginning of a new message if len(messageBuffer) > 0: # Check if the message buffer contains characters from previous iterations parsedData.append([date, time, author, ' '.join(messageBuffer)]) # Save the tokens from the previous message in parsedData messageBuffer.clear() # Clear the message buffer so that it can be used for the next message date, time, author, message = getDataPoint(line) # Identify and extract tokens from the line messageBuffer.append(message) # Append message to buffer else: messageBuffer.append(line) # If a line doesn't start with a Date Time pattern, then it is part of a multi-line message. So, just append to buffer !pip install data-anonymizer-mapper from anonymizer import Anonymizer anonymizer = Anonymizer() print(parsedData) df = pd.DataFrame(parsedData, columns=['Date', 'Time', 'Author', 'Message']) df['Author'] = df['Author'].apply(lambda s : anonymizer.get_anonymized_name(s) if s is not None else s) df.head() df.describe() #Number of messages per author author_messages=df['Author'].value_counts() #print(author_messages) author_messages.plot.barh() messages_Scrum= df.loc[df['Message'].str.contains(pat='scrum')== True] print(messages_Scrum)
def redact(input_dir, output_dir, anonymizer_config, recognizer_config): """Redact the documents in a directory. This script tries to redact all documents in the given directory and its subdirectories. Note: The redaction is done in an unsupervised manor. You have to ensure, that the chosen recognizers and configuration provide results of a sufficient quality on the given data. Do not use for anything critical.""" if input_dir is None or output_dir is None: raise UsageError("Please provide an input_dir and output_dir.") input_dir = Path(input_dir) output_dir = Path(output_dir) anonymizer_config = Path(anonymizer_config) recognizer_config = Path(recognizer_config) with open(anonymizer_config, "r") as f: config = AnonymizerConfig(**json.load(f)) anonymizer = Anonymizer(config) with open(recognizer_config, "r") as f: recognizer_config = nerwhal.Config(**json.load(f)) click.echo(f'Start redacting files in "{input_dir}" ...') items_to_redact = [] for root, dirs, files in os.walk(input_dir): for file in files: items_to_redact += [(root, file)] with progressbar(items_to_redact) as items: for root, file in items: relative_path = Path(os.path.relpath(root, start=input_dir)) / Path(file) in_path = input_dir / relative_path try: wrapper = FileWrapper(in_path) except UnsupportedFormat: click.echo( f"Warning: Unsupported format for file {relative_path}! This file was skipped!" ) continue except Exception: click.echo( f"Error while processing file {relative_path}! This file was skipped!", err=True) continue result = nerwhal.recognize( wrapper.text, config=recognizer_config, combination_strategy="smart-fusion", context_words=True, return_tokens=False, ) id_to_piis = { str(idx): pii for idx, pii in enumerate(result["ents"]) } piis_for_anonymizer = [ Pii(tag=pii.tag, text=pii.text, id=idx) for idx, pii in id_to_piis.items() ] anonymized_piis = [ anonymized_pii for anonymized_pii in anonymizer.anonymize(piis_for_anonymizer) if anonymized_pii.modified ] for anonymized_pii in anonymized_piis: unanonymized_pii = id_to_piis[anonymized_pii.id] wrapper.add_alter(unanonymized_pii.start_char, unanonymized_pii.end_char, anonymized_pii.text) wrapper.apply_alters() out_path = output_dir / relative_path out_path.parent.mkdir(parents=True, exist_ok=True) wrapper.save(out_path) click.echo(f'The redacted files have been written to "{output_dir}".')
import json from anonymizer import Anonymizer from faker import Faker from faker.providers import internet import re anonymizer = Anonymizer() def anonymize_url(url): identity = ('username', 'users', 'FirstName', 'lastName', 'LastName', 'FirstName', 'password', 'Password') for value in identity: if url.rfind(value) != -1: return replace(url, value) return url def anonymize_ip(): fake = Faker() fake.add_provider(internet) ip = fake.ipv4_private() return ip def replace(url, string): position = url.rfind(string) + len(string) + 1 substring = url[position:] anonymized_string = anonymizer.get_anonymized_name(substring) an_url = url.replace(substring, anonymized_string) #print(anonymizer.get_original_name(anonymized_string))