def test_set_spacing(self): for img in self.imgs: # set spacing from list new_spacing_list = [6.9]*img.dimension ants.set_spacing(img, new_spacing_list) self.assertEqual(img.spacing, tuple(new_spacing_list)) # set spacing from tuple new_spacing_tuple = tuple(new_spacing_list) ants.set_spacing(img, new_spacing_tuple) self.assertEqual(ants.get_spacing(img), new_spacing_tuple)
def volume(label_image): # 计算标签文件中各个标签的体积 image = ants.image_read(label_image).numpy() max_num = np.int(np.max(image)) Volume = np.zeros(max_num + 1) for label in range(1, max_num + 1): Volume[label] = np.sum(image == label) [x, y, z] = ants.get_spacing(ants.from_numpy(image)) voxel_volume = x * y * z return Volume * voxel_volume
def lung_extraction(image, modality="proton", antsxnet_cache_directory=None, verbose=False): """ Perform proton or ct lung extraction using U-net. Arguments --------- image : ANTsImage input image modality : string Modality image type. Options include "ct", "proton", "protonLobes", "maskLobes", and "ventilation". antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Dictionary of ANTs segmentation and probability images. Example ------- >>> output = lung_extraction(lung_image, modality="proton") """ from ..architectures import create_unet_model_2d from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data from ..utilities import pad_or_crop_image_to_size if image.dimension != 3: raise ValueError( "Image dimension must be 3." ) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" image_mods = [modality] channel_size = len(image_mods) weights_file_name = None unet_model = None if modality == "proton": weights_file_name = get_pretrained_network("protonLungMri", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left_lung", "right_lung") number_of_classification_labels = len(classes) reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(7, 7, 5), deconvolution_kernel_size=(7, 7, 5)) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) batchX = np.expand_dims(warped_image.numpy(), axis=0) batchX = np.expand_dims(batchX, axis=-1) batchX = (batchX - batchX.mean()) / batchX.std() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability mask to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) if modality == "protonLobes" or modality == "maskLobes": reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape spatial_priors_file_name_path = get_antsxnet_data("protonLobePriors", antsxnet_cache_directory=antsxnet_cache_directory) spatial_priors = ants.image_read(spatial_priors_file_name_path) priors_image_list = ants.ndimage_to_list(spatial_priors) channel_size = 1 + len(priors_image_list) number_of_classification_labels = 1 + len(priors_image_list) unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_filters_at_base_layer=16, number_of_layers=4, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), dropout_rate=0.0, weight_decay=0, additional_options=("attentionGating",)) if modality == "protonLobes": penultimate_layer = unet_model.layers[-2].output outputs2 = Conv3D(filters=1, kernel_size=(1, 1, 1), activation='sigmoid', kernel_regularizer=regularizers.l2(0.0))(penultimate_layer) unet_model = Model(inputs=unet_model.input, outputs=[unet_model.output, outputs2]) weights_file_name = get_pretrained_network("protonLobes", antsxnet_cache_directory=antsxnet_cache_directory) else: weights_file_name = get_pretrained_network("maskLobes", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) warped_array = warped_image.numpy() if modality == "protonLobes": warped_array = (warped_array - warped_array.mean()) / warped_array.std() else: warped_array[warped_array != 0] = 1 batchX = np.zeros((1, *warped_array.shape, channel_size)) batchX[0,:,:,:,0] = warped_array for i in range(len(priors_image_list)): batchX[0,:,:,:,i+1] = priors_image_list[i].numpy() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): if modality == "protonLobes": probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0][0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) else: probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability images to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] if modality == "protonLobes": whole_lung_mask = ants.from_numpy(np.squeeze(predicted_data[1][0, :, :, :, 0]), origin=origin, spacing=spacing, direction=direction) whole_lung_mask = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), whole_lung_mask, image) return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array, 'whole_lung_mask_image' : whole_lung_mask} return(return_dict) else: return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) elif modality == "ct": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess CT image.") def closest_simplified_direction_matrix(direction): closest = np.floor(np.abs(direction) + 0.5) closest[direction < 0] *= -1.0 return closest simplified_direction = closest_simplified_direction_matrix(image.direction) reference_image_size = (128, 128, 128) ct_preprocessed = ants.resample_image(image, reference_image_size, use_voxels=True, interp_type=0) ct_preprocessed[ct_preprocessed < -1000] = -1000 ct_preprocessed[ct_preprocessed > 400] = 400 ct_preprocessed.set_direction(simplified_direction) ct_preprocessed.set_origin((0, 0, 0)) ct_preprocessed.set_spacing((1, 1, 1)) ################################ # # Reorient image # ################################ reference_image = ants.make_image(reference_image_size, voxval=0, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = np.floor(ants.get_center_of_mass(reference_image * 0 + 1)) center_of_mass_image = np.floor(ants.get_center_of_mass(ct_preprocessed * 0 + 1)) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_reference) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) ct_preprocessed = ((ct_preprocessed - ct_preprocessed.min()) / (ct_preprocessed.max() - ct_preprocessed.min())) ct_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, ct_preprocessed, reference_image, interpolation="nearestneighbor") ct_preprocessed_warped = ((ct_preprocessed_warped - ct_preprocessed_warped.min()) / (ct_preprocessed_warped.max() - ct_preprocessed_warped.min())) - 0.5 ################################ # # Build models and load weights # ################################ if verbose == True: print("Build model and load weights.") weights_file_name = get_pretrained_network("lungCtWithPriorsSegmentationWeights", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left lung", "right lung", "airways") number_of_classification_labels = len(classes) luna16_priors = ants.ndimage_to_list(ants.image_read(get_antsxnet_data("luna16LungPriors"))) for i in range(len(luna16_priors)): luna16_priors[i] = ants.resample_image(luna16_priors[i], reference_image_size, use_voxels=True) channel_size = len(luna16_priors) + 1 unet_model = create_unet_model_3d((*reference_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), weight_decay=1e-5, additional_options=("attentionGating",)) unet_model.load_weights(weights_file_name) ################################ # # Do prediction and normalize to native space # ################################ if verbose == True: print("Prediction.") batchX = np.zeros((1, *reference_image_size, channel_size)) batchX[:,:,:,:,0] = ct_preprocessed_warped.numpy() for i in range(len(luna16_priors)): batchX[:,:,:,:,i+1] = luna16_priors[i].numpy() - 0.5 predicted_data = unet_model.predict(batchX, verbose=verbose) probability_images = list() for i in range(number_of_classification_labels): if verbose == True: print("Reconstructing image", classes[i]) probability_image = ants.from_numpy(np.squeeze(predicted_data[:,:,:,:,i]), origin=ct_preprocessed_warped.origin, spacing=ct_preprocessed_warped.spacing, direction=ct_preprocessed_warped.direction) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_image, ct_preprocessed) probability_image = ants.resample_image(probability_image, resample_params=image.shape, use_voxels=True, interp_type=0) probability_image = ants.copy_image_info(image, probability_image) probability_images.append(probability_image) image_matrix = ants.image_list_to_matrix(probability_images, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images} return(return_dict) elif modality == "ventilation": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess ventilation image.") template_size = (256, 256) image_modalities = ("Ventilation",) channel_size = len(image_modalities) preprocessed_image = (image - image.mean()) / image.std() ants.set_direction(preprocessed_image, np.identity(3)) ################################ # # Build models and load weights # ################################ unet_model = create_unet_model_2d((*template_size, channel_size), number_of_outputs=1, mode='sigmoid', number_of_layers=4, number_of_filters_at_base_layer=32, dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0) if verbose == True: print("Whole lung mask: retrieving model weights.") weights_file_name = get_pretrained_network("wholeLungMaskFromVentilation", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ spacing = ants.get_spacing(preprocessed_image) dimensions_to_predict = (spacing.index(max(spacing)),) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += preprocessed_image.shape[dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = preprocessed_image.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): ventilation_slice = pad_or_crop_image_to_size(ants.slice_image(preprocessed_image, dimensions_to_predict[d], i), template_size) batchX[slice_count,:,:,0] = ventilation_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) probability_image = ants.image_clone(image) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + preprocessed_image.shape[dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices,:,:,0] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info(image, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), image.shape)) probability_image = probability_image + (prediction_image - probability_image) / (d + 1) current_start_slice = current_end_slice + 1 return(probability_image) else: return ValueError("Unrecognized modality.")
# Extracting canonical functional network maps ## preprocessing csfAndWM = ( ants.threshold_image( boldseg, 1, 1 ) + ants.threshold_image( boldseg, 3, 3 ) ).morphology("erode",1) bold = ants.image_read( boldfnsR ) boldList = ants.ndimage_to_list( bold ) avgBold = ants.get_average_of_timeseries( bold, range( 5 ) ) boldUndTX = ants.registration( und, avgBold, "SyN", regIterations = (15,4), synMetric = "CC", synSampling = 2, verbose = False ) boldUndTS = ants.apply_transforms( und, bold, boldUndTX['fwdtransforms'], imagetype = 3 ) motCorr = ants.motion_correction( boldUndTS, avgBold, type_of_transform="Rigid", verbose = True ) tr = ants.get_spacing( bold )[3] highMotionTimes = np.where( motCorr['FD'] >= 0.5 ) goodtimes = np.where( motCorr['FD'] < 0.5 ) avgBold = ants.get_average_of_timeseries( motCorr['motion_corrected'], range( 5 ) ) ####################### nt = len(motCorr['FD']) plt.plot( range( nt ), motCorr['FD'] ) plt.show() ################################################# mycompcor = ants.compcor( motCorr['motion_corrected'], filter_type='polynomial', degree=4 ) ########## smth = ( 1.0, 1.0, 1.0, 2.0 ) # this is for sigmaInPhysicalCoordinates = F simg = ants.smooth_image( motCorr['motion_corrected'], smth, sigma_in_physical_coordinates = False ) gmseg = ants.threshold_image( boldseg, 2, 2 )
outputPrefix = outputDirectory + 'antspy' numberOfOuterIterations = 5 image = ants.image_read( dataDirectory + 'KKI2009-01-MPRAGE_slice150.nii.gz', dimension = 2 ) mask = ants.image_read( dataDirectory + 'KKI2009-01-MPRAGE_slice150_mask.nii.gz', dimension = 2 ) weightMask = None for i in range( numberOfOuterIterations ): print( "*************** N4 <---> Atropos iteration ", i, " ******************\n" ) n4Results = ants.n4_bias_field_correction( image, mask = mask, weight_mask = weightMask, verbose = True ) image = n4Results atroposResults = ants.atropos( a = image, x = mask ) onesImage = ants.make_image( image.shape, voxval = 0, spacing = ants.get_spacing( image ), origin = ants.get_origin( image ), direction = ants.get_direction( image ) ) weightMask = atroposResults['probabilityimages'][1] *\ ( onesImage - atroposResults['probabilityimages'][0] ) *\ ( onesImage - atroposResults['probabilityimages'][2] ) +\ atroposResults['probabilityimages'][2] *\ ( onesImage - atroposResults['probabilityimages'][1] ) *\ ( onesImage - atroposResults['probabilityimages'][0] ) ants.image_write( image, outputPrefix + "N4Corrected.nii.gz" ) ants.image_write( atroposResults['segmentation'], outputPrefix + "AtroposSegmentation.nii.gz" ) for i in range( len( atroposResults['probabilityimages'] ) ): ants.image_write( atroposResults['probabilityimages'][i], outputPrefix + "AtroposSegmentationProbability" + str( i ) + ".nii.gz" )
def el_bicho(ventilation_image, mask, use_coarse_slices_only=True, antsxnet_cache_directory=None, verbose=False): """ Perform functional lung segmentation using hyperpolarized gases. https://pubmed.ncbi.nlm.nih.gov/30195415/ Arguments --------- ventilation_image : ANTsImage input ventilation image. mask : ANTsImage input mask. use_coarse_slices_only : boolean If True, apply network only in the dimension of greatest slice thickness. If False, apply to all dimensions and average the results. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Ventilation segmentation and corresponding probability images Example ------- >>> image = ants.image_read("ventilation.nii.gz") >>> mask = ants.image_read("mask.nii.gz") >>> lung_seg = el_bicho(image, mask, use_coarse_slices=True, verbose=False) """ from ..architectures import create_unet_model_2d from ..utilities import get_pretrained_network from ..utilities import pad_or_crop_image_to_size if ventilation_image.dimension != 3: raise ValueError("Image dimension must be 3.") if ventilation_image.shape != mask.shape: raise ValueError( "Ventilation image and mask size are not the same size.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" ################################ # # Preprocess image # ################################ template_size = (256, 256) classes = (0, 1, 2, 3, 4) number_of_classification_labels = len(classes) image_modalities = ("Ventilation", "Mask") channel_size = len(image_modalities) preprocessed_image = (ventilation_image - ventilation_image.mean()) / ventilation_image.std() ants.set_direction(preprocessed_image, np.identity(3)) mask_identity = ants.image_clone(mask) ants.set_direction(mask_identity, np.identity(3)) ################################ # # Build models and load weights # ################################ unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=32, dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=1e-5, additional_options=("attentionGating")) if verbose == True: print("El Bicho: retrieving model weights.") weights_file_name = get_pretrained_network( "elBicho", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ spacing = ants.get_spacing(preprocessed_image) dimensions_to_predict = (spacing.index(max(spacing)), ) if use_coarse_slices_only == False: dimensions_to_predict = list(range(3)) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += preprocessed_image.shape[ dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = preprocessed_image.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): ventilation_slice = pad_or_crop_image_to_size( ants.slice_image(preprocessed_image, dimensions_to_predict[d], i), template_size) batchX[slice_count, :, :, 0] = ventilation_slice.numpy() mask_slice = pad_or_crop_image_to_size( ants.slice_image(mask_identity, dimensions_to_predict[d], i), template_size) batchX[slice_count, :, :, 1] = mask_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) probability_images = list() for l in range(number_of_classification_labels): probability_images.append(ants.image_clone(mask) * 0) current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + preprocessed_image.shape[ dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) for l in range(number_of_classification_labels): prediction_per_dimension = prediction[which_batch_slices, :, :, l] prediction_array = np.transpose( np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( ventilation_image, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), ventilation_image.shape)) probability_images[l] = probability_images[l] + ( prediction_image - probability_images[l]) / (d + 1) current_start_slice = current_end_slice + 1 ################################ # # Convert probability images to segmentation # ################################ image_matrix = ants.image_list_to_matrix( probability_images[1:(len(probability_images))], mask * 0 + 1) background_foreground_matrix = np.stack([ ants.image_list_to_matrix([probability_images[0]], mask * 0 + 1), np.expand_dims(np.sum(image_matrix, axis=0), axis=0) ]) foreground_matrix = np.argmax(background_foreground_matrix, axis=0) segmentation_matrix = (np.argmax(image_matrix, axis=0) + 1) * foreground_matrix segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), mask * 0 + 1)[0] return_dict = { 'segmentation_image': segmentation_image, 'probability_images': probability_images } return (return_dict)
def ew_david(flair, t1, do_preprocessing=True, do_slicewise=True, antsxnet_cache_directory=None, verbose=False): """ Perform White matter hypterintensity probabilistic segmentation using deep learning Preprocessing on the training data consisted of: * n4 bias correction, * brain extraction, and * affine registration to MNI. The input T1 should undergo the same steps. If the input T1 is the raw T1, these steps can be performed by the internal preprocessing, i.e. set \code{doPreprocessing = TRUE} Arguments --------- flair : ANTsImage input 3-D FLAIR brain image (not skull-stripped). t1 : ANTsImage input 3-D T1 brain image (not skull-stripped). do_preprocessing : boolean perform n4 bias correction? do_slicewise : boolean apply 2-D modal along direction of maximal slice thickness. verbose : boolean Print progress to the screen. Returns ------- WMH segmentation probability image Example ------- >>> image = ants.image_read("flair.nii.gz") >>> probability_mask = sysu_media_wmh_segmentation(image) """ from ..architectures import create_unet_model_2d from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import preprocess_brain_image from ..utilities import extract_image_patches from ..utilities import reconstruct_image_from_patches from ..utilities import pad_or_crop_image_to_size if flair.dimension != 3: raise ValueError( "Image dimension must be 3." ) if t1.dimension != 3: raise ValueError( "Image dimension must be 3." ) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" if do_slicewise == False: ################################ # # Preprocess images # ################################ t1_preprocessed = t1 t1_preprocessing = None if do_preprocessing == True: t1_preprocessing = preprocess_brain_image(t1, truncate_intensity=(0.01, 0.99), do_brain_extraction=True, template="croppedMni152", template_transform_type="AffineFast", do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] * t1_preprocessing['brain_mask'] flair_preprocessed = flair if do_preprocessing == True: flair_preprocessing = preprocess_brain_image(flair, truncate_intensity=(0.01, 0.99), do_brain_extraction=False, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) flair_preprocessed = ants.apply_transforms(fixed=t1_preprocessed, moving=flair_preprocessing["preprocessed_image"], transformlist=t1_preprocessing['template_transforms']['fwdtransforms']) flair_preprocessed = flair_preprocessed * t1_preprocessing['brain_mask'] ################################ # # Build model and load weights # ################################ patch_size = (112, 112, 112) stride_length = (t1_preprocessed.shape[0] - patch_size[0], t1_preprocessed.shape[1] - patch_size[1], t1_preprocessed.shape[2] - patch_size[2]) classes = ("background", "wmh" ) number_of_classification_labels = len(classes) labels = (0, 1) image_modalities = ("T1", "FLAIR") channel_size = len(image_modalities) unet_model = create_unet_model_3d((*patch_size, channel_size), number_of_outputs = number_of_classification_labels, number_of_layers = 4, number_of_filters_at_base_layer = 16, dropout_rate = 0.0, convolution_kernel_size = (3, 3, 3), deconvolution_kernel_size = (2, 2, 2), weight_decay = 1e-5, nn_unet_activation_style=False, add_attention_gating=True) weights_file_name = get_pretrained_network("ewDavidWmhSegmentationWeights", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Do prediction and normalize to native space # ################################ if verbose == True: print("ew_david: prediction.") batchX = np.zeros((8, *patch_size, channel_size)) t1_preprocessed = (t1_preprocessed - t1_preprocessed.mean()) / t1_preprocessed.std() t1_patches = extract_image_patches(t1_preprocessed, patch_size=patch_size, max_number_of_patches="all", stride_length=stride_length, return_as_array=True) batchX[:,:,:,:,0] = t1_patches flair_preprocessed = (flair_preprocessed - flair_preprocessed.mean()) / flair_preprocessed.std() flair_patches = extract_image_patches(flair_preprocessed, patch_size=patch_size, max_number_of_patches="all", stride_length=stride_length, return_as_array=True) batchX[:,:,:,:,1] = flair_patches predicted_data = unet_model.predict(batchX, verbose=verbose) probability_images = list() for i in range(len(labels)): print("Reconstructing image", classes[i]) reconstructed_image = reconstruct_image_from_patches(predicted_data[:,:,:,:,i], domain_image=t1_preprocessed, stride_length=stride_length) if do_preprocessing == True: probability_images.append(ants.apply_transforms(fixed=t1, moving=reconstructed_image, transformlist=t1_preprocessing['template_transforms']['invtransforms'], whichtoinvert=[True], interpolator="linear", verbose=verbose)) else: probability_images.append(reconstructed_image) return(probability_images[1]) else: # do_slicewise ################################ # # Preprocess images # ################################ t1_preprocessed = t1 t1_preprocessing = None if do_preprocessing == True: t1_preprocessing = preprocess_brain_image(t1, truncate_intensity=(0.01, 0.99), do_brain_extraction=False, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] flair_preprocessed = flair if do_preprocessing == True: flair_preprocessing = preprocess_brain_image(flair, truncate_intensity=(0.01, 0.99), do_brain_extraction=False, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) flair_preprocessed = flair_preprocessing["preprocessed_image"] resampling_params = list(ants.get_spacing(flair_preprocessed)) do_resampling = False for d in range(len(resampling_params)): if resampling_params[d] < 0.8: resampling_params[d] = 1.0 do_resampling = True resampling_params = tuple(resampling_params) if do_resampling: flair_preprocessed = ants.resample_image(flair_preprocessed, resampling_params, use_voxels=False, interp_type=0) t1_preprocessed = ants.resample_image(t1_preprocessed, resampling_params, use_voxels=False, interp_type=0) flair_preprocessed = (flair_preprocessed - flair_preprocessed.mean()) / flair_preprocessed.std() t1_preprocessed = (t1_preprocessed - t1_preprocessed.mean()) / t1_preprocessed.std() ################################ # # Build model and load weights # ################################ template_size = (256, 256) classes = ("background", "wmh" ) number_of_classification_labels = len(classes) labels = (0, 1) image_modalities = ("T1", "FLAIR") channel_size = len(image_modalities) unet_model = create_unet_model_2d((*template_size, channel_size), number_of_outputs = number_of_classification_labels, number_of_layers = 4, number_of_filters_at_base_layer = 32, dropout_rate = 0.0, convolution_kernel_size = (3, 3), deconvolution_kernel_size = (2, 2), weight_decay = 1e-5, nn_unet_activation_style=True, add_attention_gating=True) if verbose == True: print("ewDavid: retrieving model weights.") weights_file_name = get_pretrained_network("ewDavidWmhSegmentationSlicewiseWeights", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ use_coarse_slices_only = True spacing = ants.get_spacing(flair_preprocessed) dimensions_to_predict = (spacing.index(max(spacing)),) if use_coarse_slices_only == False: dimensions_to_predict = list(range(3)) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += flair_preprocessed.shape[dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = flair_preprocessed.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): flair_slice = pad_or_crop_image_to_size(ants.slice_image(flair_preprocessed, dimensions_to_predict[d], i), template_size) batchX[slice_count,:,:,0] = flair_slice.numpy() t1_slice = pad_or_crop_image_to_size(ants.slice_image(t1_preprocessed, dimensions_to_predict[d], i), template_size) batchX[slice_count,:,:,1] = t1_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) prediction_image_average = ants.image_clone(flair_preprocessed) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + flair_preprocessed.shape[dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices,:,:,1] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info(flair_preprocessed, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), flair_preprocessed.shape)) prediction_image_average = prediction_image_average + (prediction_image - prediction_image_average) / (d + 1) current_start_slice = current_end_slice + 1 if do_resampling: prediction_image_average = ants.resample_image_to_target(prediction_image_average, flair) return(prediction_image_average)
def test_get_spacing(self): for img in self.imgs: spacing = ants.get_spacing(img) self.assertTrue(isinstance(spacing, tuple)) self.assertEqual(len(ants.get_spacing(img)), img.dimension)
def ew_david(flair, t1, do_preprocessing=True, which_model="sysu", which_axes=2, number_of_simulations=0, sd_affine=0.01, antsxnet_cache_directory=None, verbose=False): """ Perform White matter hyperintensity probabilistic segmentation using deep learning Preprocessing on the training data consisted of: * n4 bias correction, * intensity truncation, * brain extraction, and * affine registration to MNI. The input T1 should undergo the same steps. If the input T1 is the raw T1, these steps can be performed by the internal preprocessing, i.e. set \code{do_preprocessing = True} Arguments --------- flair : ANTsImage input 3-D FLAIR brain image (not skull-stripped). t1 : ANTsImage input 3-D T1 brain image (not skull-stripped). do_preprocessing : boolean perform n4 bias correction, intensity truncation, brain extraction. which_model : string one of: * "sysu" -- same as the original sysu network (without site specific preprocessing), * "sysu-ri" -- same as "sysu" but using ranked intensity scaling for input images, * "sysuWithAttention" -- "sysu" with attention gating, * "sysuWithAttentionAndSite" -- "sysu" with attention gating with site branch (see "sysuWithSite"), * "sysuPlus" -- "sysu" with attention gating and nn-Unet activation, * "sysuPlusSeg" -- "sysuPlus" with deep_atropos segmentation in an additional channel, and * "sysuWithSite" -- "sysu" with global pooling on encoding channels to predict "site". * "sysuPlusSegWithSite" -- "sysuPlusSeg" combined with "sysuWithSite" In addition to both modalities, all models have T1-only and flair-only variants except for "sysuPlusSeg" (which only has a T1-only variant) or "sysu-ri" (which has neither single modality variant). which_axes : string or scalar or tuple/vector apply 2-D model to 1 or more axes. In addition to a scalar or vector, e.g., which_axes = (0, 2), one can use "max" for the axis with maximum anisotropy (default) or "all" for all axes. number_of_simulations : integer Number of random affine perturbations to transform the input. sd_affine : float Define the standard deviation of the affine transformation parameter. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- WMH segmentation probability image Example ------- >>> image = ants.image_read("flair.nii.gz") >>> probability_mask = sysu_media_wmh_segmentation(image) """ from ..architectures import create_unet_model_2d from ..utilities import deep_atropos from ..utilities import get_pretrained_network from ..utilities import preprocess_brain_image from ..utilities import randomly_transform_image_data from ..utilities import pad_or_crop_image_to_size do_t1_only = False do_flair_only = False if flair is None and t1 is not None: do_t1_only = True elif flair is not None and t1 is None: do_flair_only = True use_t1_segmentation = False if "Seg" in which_model: if do_flair_only: raise ValueError("Segmentation requires T1.") else: use_t1_segmentation = True if use_t1_segmentation and do_preprocessing == False: raise ValueError( "Using the t1 segmentation requires do_preprocessing=True.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" do_slicewise = True if do_slicewise == False: raise ValueError("Not available.") # ################################ # # # # Preprocess images # # # ################################ # t1_preprocessed = t1 # t1_preprocessing = None # if do_preprocessing == True: # t1_preprocessing = preprocess_brain_image(t1, # truncate_intensity=(0.01, 0.99), # brain_extraction_modality="t1", # template="croppedMni152", # template_transform_type="antsRegistrationSyNQuickRepro[a]", # do_bias_correction=True, # do_denoising=False, # antsxnet_cache_directory=antsxnet_cache_directory, # verbose=verbose) # t1_preprocessed = t1_preprocessing["preprocessed_image"] * t1_preprocessing['brain_mask'] # flair_preprocessed = flair # if do_preprocessing == True: # flair_preprocessing = preprocess_brain_image(flair, # truncate_intensity=(0.01, 0.99), # brain_extraction_modality="t1", # do_bias_correction=True, # do_denoising=False, # antsxnet_cache_directory=antsxnet_cache_directory, # verbose=verbose) # flair_preprocessed = ants.apply_transforms(fixed=t1_preprocessed, # moving=flair_preprocessing["preprocessed_image"], # transformlist=t1_preprocessing['template_transforms']['fwdtransforms']) # flair_preprocessed = flair_preprocessed * t1_preprocessing['brain_mask'] # ################################ # # # # Build model and load weights # # # ################################ # patch_size = (112, 112, 112) # stride_length = (t1_preprocessed.shape[0] - patch_size[0], # t1_preprocessed.shape[1] - patch_size[1], # t1_preprocessed.shape[2] - patch_size[2]) # classes = ("background", "wmh" ) # number_of_classification_labels = len(classes) # labels = (0, 1) # image_modalities = ("T1", "FLAIR") # channel_size = len(image_modalities) # unet_model = create_unet_model_3d((*patch_size, channel_size), # number_of_outputs = number_of_classification_labels, # number_of_layers = 4, number_of_filters_at_base_layer = 16, dropout_rate = 0.0, # convolution_kernel_size = (3, 3, 3), deconvolution_kernel_size = (2, 2, 2), # weight_decay = 1e-5, additional_options=("attentionGating")) # weights_file_name = get_pretrained_network("ewDavidWmhSegmentationWeights", # antsxnet_cache_directory=antsxnet_cache_directory) # unet_model.load_weights(weights_file_name) # ################################ # # # # Do prediction and normalize to native space # # # ################################ # if verbose == True: # print("ew_david: prediction.") # batchX = np.zeros((8, *patch_size, channel_size)) # t1_preprocessed = (t1_preprocessed - t1_preprocessed.mean()) / t1_preprocessed.std() # t1_patches = extract_image_patches(t1_preprocessed, patch_size=patch_size, # max_number_of_patches="all", stride_length=stride_length, # return_as_array=True) # batchX[:,:,:,:,0] = t1_patches # flair_preprocessed = (flair_preprocessed - flair_preprocessed.mean()) / flair_preprocessed.std() # flair_patches = extract_image_patches(flair_preprocessed, patch_size=patch_size, # max_number_of_patches="all", stride_length=stride_length, # return_as_array=True) # batchX[:,:,:,:,1] = flair_patches # predicted_data = unet_model.predict(batchX, verbose=verbose) # probability_images = list() # for i in range(len(labels)): # print("Reconstructing image", classes[i]) # reconstructed_image = reconstruct_image_from_patches(predicted_data[:,:,:,:,i], # domain_image=t1_preprocessed, stride_length=stride_length) # if do_preprocessing == True: # probability_images.append(ants.apply_transforms(fixed=t1, # moving=reconstructed_image, # transformlist=t1_preprocessing['template_transforms']['invtransforms'], # whichtoinvert=[True], interpolator="linear", verbose=verbose)) # else: # probability_images.append(reconstructed_image) # return(probability_images[1]) else: # do_slicewise ################################ # # Preprocess images # ################################ use_rank_intensity_scaling = False if "-ri" in which_model: use_rank_intensity_scaling = True t1_preprocessed = None t1_preprocessing = None brain_mask = None if t1 is not None: if do_preprocessing == True: t1_preprocessing = preprocess_brain_image( t1, truncate_intensity=(0.01, 0.995), brain_extraction_modality="t1", do_bias_correction=False, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_mask = ants.threshold_image( t1_preprocessing["brain_mask"], 0.5, 1, 1, 0) t1_preprocessed = t1_preprocessing["preprocessed_image"] t1_segmentation = None if use_t1_segmentation: atropos_seg = deep_atropos(t1, do_preprocessing=True, verbose=verbose) t1_segmentation = atropos_seg['segmentation_image'] flair_preprocessed = None if flair is not None: flair_preprocessed = flair if do_preprocessing == True: if brain_mask is None: flair_preprocessing = preprocess_brain_image( flair, truncate_intensity=(0.01, 0.995), brain_extraction_modality="flair", do_bias_correction=False, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_mask = ants.threshold_image( flair_preprocessing["brain_mask"], 0.5, 1, 1, 0) else: flair_preprocessing = preprocess_brain_image( flair, truncate_intensity=None, brain_extraction_modality=None, do_bias_correction=False, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) flair_preprocessed = flair_preprocessing["preprocessed_image"] if t1_preprocessed is not None: t1_preprocessed = t1_preprocessed * brain_mask if flair_preprocessed is not None: flair_preprocessed = flair_preprocessed * brain_mask if t1_preprocessed is not None: resampling_params = list(ants.get_spacing(t1_preprocessed)) else: resampling_params = list(ants.get_spacing(flair_preprocessed)) do_resampling = False for d in range(len(resampling_params)): if resampling_params[d] < 0.8: resampling_params[d] = 1.0 do_resampling = True resampling_params = tuple(resampling_params) if do_resampling: if flair_preprocessed is not None: flair_preprocessed = ants.resample_image(flair_preprocessed, resampling_params, use_voxels=False, interp_type=0) if t1_preprocessed is not None: t1_preprocessed = ants.resample_image(t1_preprocessed, resampling_params, use_voxels=False, interp_type=0) if t1_segmentation is not None: t1_segmentation = ants.resample_image(t1_segmentation, resampling_params, use_voxels=False, interp_type=1) if brain_mask is not None: brain_mask = ants.resample_image(brain_mask, resampling_params, use_voxels=False, interp_type=1) ################################ # # Build model and load weights # ################################ template_size = (208, 208) image_modalities = ("T1", "FLAIR") if do_flair_only: image_modalities = ("FLAIR", ) elif do_t1_only: image_modalities = ("T1", ) if use_t1_segmentation: image_modalities = (*image_modalities, "T1Seg") channel_size = len(image_modalities) unet_model = None if which_model == "sysu" or which_model == "sysu-ri": unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("initialConvolutionKernelSize[5]", )) elif which_model == "sysuWithAttention": unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("attentionGating", "initialConvolutionKernelSize[5]")) elif which_model == "sysuWithAttentionAndSite": unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", scalar_output_size=3, scalar_output_activation="softmax", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("attentionGating", "initialConvolutionKernelSize[5]")) elif which_model == "sysuWithSite": unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", scalar_output_size=3, scalar_output_activation="softmax", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("initialConvolutionKernelSize[5]", )) elif which_model == "sysuPlusSegWithSite": unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", scalar_output_size=3, scalar_output_activation="softmax", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("nnUnetActivationStyle", "attentionGating", "initialConvolutionKernelSize[5]")) else: unet_model = create_unet_model_2d( (*template_size, channel_size), number_of_outputs=1, mode="sigmoid", number_of_filters=(64, 96, 128, 256, 512), dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0, additional_options=("nnUnetActivationStyle", "attentionGating", "initialConvolutionKernelSize[5]")) if verbose == True: print("ewDavid: retrieving model weights.") weights_file_name = None if which_model == "sysu" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysu", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysu-ri" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuRankedIntensity", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysu" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysu" and flair is not None and t1 is None: weights_file_name = get_pretrained_network( "ewDavidSysuFlairOnly", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttention" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttention", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttention" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttentionT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttention" and flair is not None and t1 is None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttentionFlairOnly", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttentionAndSite" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttentionAndSite", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttentionAndSite" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttentionAndSiteT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithAttentionAndSite" and flair is not None and t1 is None: weights_file_name = get_pretrained_network( "ewDavidSysuWithAttentionAndSiteFlairOnly", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlus" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlus", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlus" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlus" and flair is not None and t1 is None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusFlairOnly", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlusSeg" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusSeg", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlusSeg" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusSegT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlusSegWithSite" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusSegWithSite", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuPlusSegWithSite" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuPlusSegWithSiteT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithSite" and flair is not None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithSite", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithSite" and flair is None and t1 is not None: weights_file_name = get_pretrained_network( "ewDavidSysuWithSiteT1Only", antsxnet_cache_directory=antsxnet_cache_directory) elif which_model == "sysuWithSite" and flair is not None and t1 is None: weights_file_name = get_pretrained_network( "ewDavidSysuWithSiteFlairOnly", antsxnet_cache_directory=antsxnet_cache_directory) else: raise ValueError( "Incorrect model specification or image combination.") unet_model.load_weights(weights_file_name) ################################ # # Data augmentation and extract slices # ################################ wmh_probability_image = None if t1 is not None: wmh_probability_image = ants.image_clone(t1_preprocessed) * 0 else: wmh_probability_image = ants.image_clone(flair_preprocessed) * 0 wmh_site = np.array([0, 0, 0]) data_augmentation = None if number_of_simulations > 0: if do_flair_only: data_augmentation = randomly_transform_image_data( reference_image=flair_preprocessed, input_image_list=[[flair_preprocessed]], number_of_simulations=number_of_simulations, transform_type='affine', sd_affine=sd_affine, input_image_interpolator='linear') elif do_t1_only: if use_t1_segmentation: data_augmentation = randomly_transform_image_data( reference_image=t1_preprocessed, input_image_list=[[t1_preprocessed]], segmentation_image_list=[t1_segmentation], number_of_simulations=number_of_simulations, transform_type='affine', sd_affine=sd_affine, input_image_interpolator='linear', segmentation_image_interpolator='nearestNeighbor') else: data_augmentation = randomly_transform_image_data( reference_image=t1_preprocessed, input_image_list=[[t1_preprocessed]], number_of_simulations=number_of_simulations, transform_type='affine', sd_affine=sd_affine, input_image_interpolator='linear') else: if use_t1_segmentation: data_augmentation = randomly_transform_image_data( reference_image=t1_preprocessed, input_image_list=[[ flair_preprocessed, t1_preprocessed ]], segmentation_image_list=[t1_segmentation], number_of_simulations=number_of_simulations, transform_type='affine', sd_affine=sd_affine, input_image_interpolator='linear', segmentation_image_interpolator='nearestNeighbor') else: data_augmentation = randomly_transform_image_data( reference_image=t1_preprocessed, input_image_list=[[ flair_preprocessed, t1_preprocessed ]], number_of_simulations=number_of_simulations, transform_type='affine', sd_affine=sd_affine, input_image_interpolator='linear') dimensions_to_predict = list((0, )) if which_axes == "max": spacing = ants.get_spacing(wmh_probability_image) dimensions_to_predict = (spacing.index(max(spacing)), ) elif which_axes == "all": dimensions_to_predict = list(range(3)) else: if isinstance(which_axes, int): dimensions_to_predict = list((which_axes, )) else: dimensions_to_predict = list(which_axes) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += wmh_probability_image.shape[ dimensions_to_predict[d]] batchX = np.zeros( (total_number_of_slices, *template_size, channel_size)) for n in range(number_of_simulations + 1): batch_flair = flair_preprocessed batch_t1 = t1_preprocessed batch_t1_segmentation = t1_segmentation batch_brain_mask = brain_mask if n > 0: if do_flair_only: batch_flair = data_augmentation['simulated_images'][n - 1][0] batch_brain_mask = ants.apply_ants_transform_to_image( data_augmentation['simulated_transforms'][n - 1], brain_mask, flair_preprocessed, interpolation="nearestneighbor") elif do_t1_only: batch_t1 = data_augmentation['simulated_images'][n - 1][0] batch_brain_mask = ants.apply_ants_transform_to_image( data_augmentation['simulated_transforms'][n - 1], brain_mask, t1_preprocessed, interpolation="nearestneighbor") else: batch_flair = data_augmentation['simulated_images'][n - 1][0] batch_t1 = data_augmentation['simulated_images'][n - 1][1] batch_brain_mask = ants.apply_ants_transform_to_image( data_augmentation['simulated_transforms'][n - 1], brain_mask, flair_preprocessed, interpolation="nearestneighbor") if use_t1_segmentation: batch_t1_segmentation = data_augmentation[ 'simulated_segmentation_images'][n - 1] if use_rank_intensity_scaling: if batch_t1 is not None: batch_t1 = ants.rank_intensity(batch_t1, batch_brain_mask) - 0.5 if batch_flair is not None: batch_flair = ants.rank_intensity(flair_preprocessed, batch_brain_mask) - 0.5 else: if batch_t1 is not None: batch_t1 = (batch_t1 - batch_t1[batch_brain_mask == 1].mean() ) / batch_t1[batch_brain_mask == 1].std() if batch_flair is not None: batch_flair = ( batch_flair - batch_flair[batch_brain_mask == 1].mean() ) / batch_flair[batch_brain_mask == 1].std() slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = None if batch_t1 is not None: number_of_slices = batch_t1.shape[dimensions_to_predict[d]] else: number_of_slices = batch_flair.shape[ dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d]) for i in range(number_of_slices): brain_mask_slice = pad_or_crop_image_to_size( ants.slice_image(batch_brain_mask, dimensions_to_predict[d], i), template_size) channel_count = 0 if batch_flair is not None: flair_slice = pad_or_crop_image_to_size( ants.slice_image(batch_flair, dimensions_to_predict[d], i), template_size) flair_slice[brain_mask_slice == 0] = 0 batchX[slice_count, :, :, channel_count] = flair_slice.numpy() channel_count += 1 if batch_t1 is not None: t1_slice = pad_or_crop_image_to_size( ants.slice_image(batch_t1, dimensions_to_predict[d], i), template_size) t1_slice[brain_mask_slice == 0] = 0 batchX[slice_count, :, :, channel_count] = t1_slice.numpy() channel_count += 1 if t1_segmentation is not None: t1_segmentation_slice = pad_or_crop_image_to_size( ants.slice_image(batch_t1_segmentation, dimensions_to_predict[d], i), template_size) t1_segmentation_slice[brain_mask_slice == 0] = 0 batchX[slice_count, :, :, channel_count] = t1_segmentation_slice.numpy( ) / 6 - 0.5 slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: if n == 0: print("Prediction") else: print("Prediction (simulation " + str(n) + ")") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) prediction_image_average = ants.image_clone( wmh_probability_image) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + wmh_probability_image.shape[ dimensions_to_predict[d]] which_batch_slices = range(current_start_slice, current_end_slice) if isinstance(prediction, list): prediction_per_dimension = prediction[0][ which_batch_slices, :, :, 0] else: prediction_per_dimension = prediction[ which_batch_slices, :, :, 0] prediction_array = np.transpose( np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( wmh_probability_image, pad_or_crop_image_to_size( ants.from_numpy(prediction_array), wmh_probability_image.shape)) prediction_image_average = prediction_image_average + ( prediction_image - prediction_image_average) / (d + 1) current_start_slice = current_end_slice wmh_probability_image = wmh_probability_image + ( prediction_image_average - wmh_probability_image) / (n + 1) if isinstance(prediction, list): wmh_site = wmh_site + (np.mean(prediction[1], axis=0) - wmh_site) / (n + 1) if do_resampling: if t1 is not None: wmh_probability_image = ants.resample_image_to_target( wmh_probability_image, t1) if flair is not None: wmh_probability_image = ants.resample_image_to_target( wmh_probability_image, flair) if isinstance(prediction, list): return ([wmh_probability_image, wmh_site]) else: return (wmh_probability_image)
def brain_extraction(image, modality="t1", antsxnet_cache_directory=None, verbose=False): """ Perform brain extraction using U-net and ANTs-based training data. "NoBrainer" is also possible where brain extraction uses U-net and FreeSurfer training data ported from the https://github.com/neuronets/nobrainer-models Arguments --------- image : ANTsImage input image (or list of images for multi-modal scenarios). modality : string Modality image type. Options include: * "t1": T1-weighted MRI---ANTs-trained. Update from "t1v0". * "t1v0": T1-weighted MRI---ANTs-trained. * "t1nobrainer": T1-weighted MRI---FreeSurfer-trained: h/t Satra Ghosh and Jakub Kaczmarzyk. * "t1combined": Brian's combination of "t1" and "t1nobrainer". One can also specify "t1combined[X]" where X is the morphological radius. X = 12 by default. * "flair": FLAIR MRI. * "t2": T2 MRI. * "bold": 3-D BOLD MRI. * "fa": Fractional anisotropy. * "t1t2infant": Combined T1-w/T2-w infant MRI h/t Martin Styner. * "t1infant": T1-w infant MRI h/t Martin Styner. * "t2infant": T2-w infant MRI h/t Martin Styner. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- ANTs probability brain mask image. Example ------- >>> probability_brain_mask = brain_extraction(brain_image, modality="t1") """ from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data from ..architectures import create_nobrainer_unet_model_3d classes = ("background", "brain") number_of_classification_labels = len(classes) channel_size = 1 if isinstance(image, list): channel_size = len(image) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" input_images = list() if channel_size == 1: input_images.append(image) else: input_images = image if input_images[0].dimension != 3: raise ValueError("Image dimension must be 3.") if "t1combined" in modality: brain_extraction_t1 = brain_extraction( image, modality="t1", antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_mask = ants.iMath_get_largest_component( ants.threshold_image(brain_extraction_t1, 0.5, 10000)) # Need to change with voxel resolution morphological_radius = 12 if '[' in modality and ']' in modality: morphological_radius = int(modality.split("[")[1].split("]")[0]) brain_extraction_t1nobrainer = brain_extraction( image * ants.iMath_MD(brain_mask, radius=morphological_radius), modality="t1nobrainer", antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_extraction_combined = ants.iMath_fill_holes( ants.iMath_get_largest_component(brain_extraction_t1nobrainer * brain_mask)) brain_extraction_combined = brain_extraction_combined + ants.iMath_ME( brain_mask, morphological_radius) + brain_mask return (brain_extraction_combined) if modality != "t1nobrainer": ##################### # # ANTs-based # ##################### weights_file_name_prefix = None if modality == "t1v0": weights_file_name_prefix = "brainExtraction" elif modality == "t1": weights_file_name_prefix = "brainExtractionT1" elif modality == "t2": weights_file_name_prefix = "brainExtractionT2" elif modality == "flair": weights_file_name_prefix = "brainExtractionFLAIR" elif modality == "bold": weights_file_name_prefix = "brainExtractionBOLD" elif modality == "fa": weights_file_name_prefix = "brainExtractionFA" elif modality == "t1t2infant": weights_file_name_prefix = "brainExtractionInfantT1T2" elif modality == "t1infant": weights_file_name_prefix = "brainExtractionInfantT1" elif modality == "t2infant": weights_file_name_prefix = "brainExtractionInfantT2" else: raise ValueError("Unknown modality type.") weights_file_name = get_pretrained_network( weights_file_name_prefix, antsxnet_cache_directory=antsxnet_cache_directory) if verbose == True: print("Brain extraction: retrieving template.") reorient_template_file_name_path = get_antsxnet_data( "S_template3", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape if modality == "t1": classes = ("background", "head", "brain") number_of_classification_labels = len(classes) unet_model = create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=8, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), weight_decay=1e-5) unet_model.load_weights(weights_file_name) if verbose == True: print("Brain extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template) center_of_mass_image = ants.get_center_of_mass(input_images[0]) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_template) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) batchX = np.zeros((1, *resampled_image_size, channel_size)) for i in range(len(input_images)): warped_image = ants.apply_ants_transform_to_image( xfrm, input_images[i], reorient_template) warped_array = warped_image.numpy() batchX[0, :, :, :, i] = (warped_array - warped_array.mean()) / warped_array.std() if verbose == True: print("Brain extraction: prediction and decoding.") predicted_data = unet_model.predict(batchX, verbose=verbose) origin = reorient_template.origin spacing = reorient_template.spacing direction = reorient_template.direction probability_images_array = list() probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 0]), origin=origin, spacing=spacing, direction=direction)) probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 1]), origin=origin, spacing=spacing, direction=direction)) if modality == "t1": probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 2]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print( "Brain extraction: renormalize probability mask to native space." ) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[number_of_classification_labels - 1], input_images[0]) return (probability_image) else: ##################### # # NoBrainer # ##################### if verbose == True: print("NoBrainer: generating network.") model = create_nobrainer_unet_model_3d((None, None, None, 1)) weights_file_name = get_pretrained_network( "brainExtractionNoBrainer", antsxnet_cache_directory=antsxnet_cache_directory) model.load_weights(weights_file_name) if verbose == True: print( "NoBrainer: preprocessing (intensity truncation and resampling)." ) image_array = image.numpy() image_robust_range = np.quantile( image_array[np.where(image_array != 0)], (0.02, 0.98)) threshold_value = 0.10 * (image_robust_range[1] - image_robust_range[0] ) + image_robust_range[0] thresholded_mask = ants.threshold_image(image, -10000, threshold_value, 0, 1) thresholded_image = image * thresholded_mask image_resampled = ants.resample_image(thresholded_image, (256, 256, 256), use_voxels=True) image_array = np.expand_dims(image_resampled.numpy(), axis=0) image_array = np.expand_dims(image_array, axis=-1) if verbose == True: print("NoBrainer: predicting mask.") brain_mask_array = np.squeeze( model.predict(image_array, verbose=verbose)) brain_mask_resampled = ants.copy_image_info( image_resampled, ants.from_numpy(brain_mask_array)) brain_mask_image = ants.resample_image(brain_mask_resampled, image.shape, use_voxels=True, interp_type=1) spacing = ants.get_spacing(image) spacing_product = spacing[0] * spacing[1] * spacing[2] minimum_brain_volume = round(649933.7 / spacing_product) brain_mask_labeled = ants.label_clusters(brain_mask_image, minimum_brain_volume) return (brain_mask_labeled)