def build_submesh(nodes, triangles, boundary, quantities,
                  triangles_per_proc, parameters = None):

    # Temporarily build the mesh to find the neighbouring
    # triangles and true boundary polygon\

    mesh = Mesh(nodes, triangles, boundary)
    boundary_polygon = mesh.get_boundary_polygon()
    

    # Subdivide into non-overlapping partitions

    submeshf = submesh_full(mesh, triangles_per_proc)
    
    # Add any extra ghost boundary layer information

    submeshg = submesh_ghost(submeshf, mesh, triangles_per_proc, parameters)

    # Order the quantities information to be the same as the triangle
    # information

    submesh = submesh_quantities(submeshg, quantities, \
                                 triangles_per_proc)

    submesh["boundary_polygon"] = boundary_polygon
    return submesh
Esempio n. 2
0
def build_submesh(nodes,
                  triangles,
                  boundary,
                  quantities,
                  triangles_per_proc,
                  parameters=None):

    # Temporarily build the mesh to find the neighbouring
    # triangles and true boundary polygon\

    mesh = Mesh(nodes, triangles, boundary)
    boundary_polygon = mesh.get_boundary_polygon()

    # Subdivide into non-overlapping partitions

    submeshf = submesh_full(mesh, triangles_per_proc)

    # Add any extra ghost boundary layer information

    submeshg = submesh_ghost(submeshf, mesh, triangles_per_proc, parameters)

    # Order the quantities information to be the same as the triangle
    # information

    submesh = submesh_quantities(submeshg, quantities, triangles_per_proc)

    submesh["boundary_polygon"] = boundary_polygon
    return submesh
Esempio n. 3
0
def get_matrix_A(fn, gauge_name):
    # points to read information from
    point_reader = reader(file(gauge_name))
    points = []
    point_name = []
    for i, row in enumerate(point_reader):
        if i == 0:
            for j, value in enumerate(row):
                if value.strip() == 'easting': easting = j
                if value.strip() == 'northing': northing = j
                if value.strip() == 'name': name = j
                if value.strip() == 'elevation': elevation = j
        else:
            #points.append([float(row[easting]),float(row[northing])])
            points.append([float(row[easting]), float(row[northing])])
            point_name.append(row[name])
    points_array = np.array(points, np.float)
    dim_gauge = int(np.sqrt(points_array.shape[0]))
    interpolation_points = ensure_absolute(points_array)

    # read the sww file to extract something
    fid = NetCDFFile(fn, netcdf_mode_r)
    xllcorner = fid.xllcorner
    yllcorner = fid.yllcorner
    zone = fid.zone
    x = fid.variables['x'][:]
    y = fid.variables['y'][:]

    triangles = fid.variables['volumes'][:]

    x = np.reshape(x, (len(x), 1))
    y = np.reshape(y, (len(y), 1))
    vertex_coordinates = np.concatenate((x, y), axis=1)
    ele = fid.variables['elevation'][:]
    fid.close()

    vertex_coordinates = ensure_absolute(vertex_coordinates)
    triangles = ensure_numeric(triangles)

    interpolation_points = ensure_numeric(interpolation_points)
    interpolation_points[:, 0] -= xllcorner
    interpolation_points[:, 1] -= yllcorner

    mesh = Mesh(vertex_coordinates, triangles)
    mesh_boundary_polygon = mesh.get_boundary_polygon()
    indices = outside_polygon(interpolation_points, mesh_boundary_polygon)
    interp = Interpolate(vertex_coordinates, triangles)
    matrix_A, inside_poly_indices, outside_poly_indices, centroids = interp._build_interpolation_matrix_A(
        interpolation_points, output_centroids=False, verbose=False)

    ele = matrix_A * ele
    ele = np.asarray(ele)
    ele = ele.reshape((100, 100))

    return ele, matrix_A
Esempio n. 4
0
    def __init__(self,
                 time,
                 quantities,
                 quantity_names=None,
                 vertex_coordinates=None,
                 triangles=None,
                 interpolation_points=None,
                 time_thinning=1,
                 verbose=False,
                 gauge_neighbour_id=None,
                 output_centroids=False):
        """Initialise object and build spatial interpolation if required

        Time_thinning_number controls how many timesteps to use. Only timesteps
        with index%time_thinning_number == 0 will used, or in other words a
        value of 3, say, will cause the algorithm to use every third time step.
        """

        from anuga.config import time_format

        if verbose is True:
            log.critical('Interpolation_function: input checks')

        # Check temporal info
        time = ensure_numeric(time)

        if not num.alltrue(time[1:] - time[:-1] >= 0):
            # This message is time consuming to form due to the conversion of
            msg = 'Time must be a monotonuosly increasing sequence %s' % time
            raise Exception(msg)

        # Check if quantities is a single array only
        if not isinstance(quantities, dict):
            quantities = ensure_numeric(quantities)
            quantity_names = ['Attribute']

            # Make it a dictionary
            quantities = {quantity_names[0]: quantities}

        # Use keys if no names are specified
        if quantity_names is None:
            quantity_names = list(quantities.keys())

        # Check spatial info
        if vertex_coordinates is None:
            self.spatial = False
        else:
            # FIXME (Ole): Try ensure_numeric here -
            #              this function knows nothing about georefering.
            vertex_coordinates = ensure_absolute(vertex_coordinates)

            if triangles is not None:
                triangles = ensure_numeric(triangles)
            self.spatial = True

        if verbose is True:
            log.critical('Interpolation_function: thinning by %d' %
                         time_thinning)

        # Thin timesteps if needed
        # Note array() is used to make the thinned arrays contiguous in memory
        self.time = num.array(time[::time_thinning])
        for name in quantity_names:
            if len(quantities[name].shape) == 2:
                quantities[name] = num.array(
                    quantities[name][::time_thinning, :])

        if verbose is True:
            log.critical('Interpolation_function: precomputing')

        # Save for use with statistics
        self.quantities_range = {}
        for name in quantity_names:
            q = quantities[name][:].flatten()
            self.quantities_range[name] = [min(q), max(q)]

        self.quantity_names = quantity_names
        self.vertex_coordinates = vertex_coordinates
        self.interpolation_points = interpolation_points

        self.index = 0  # Initial time index
        self.precomputed_values = {}
        self.centroids = []

        # Precomputed spatial interpolation if requested
        if interpolation_points is not None:
            #no longer true. sts files have spatial = True but
            #if self.spatial is False:
            #    raise Exception('Triangles and vertex_coordinates must be specified')
            #
            try:
                self.interpolation_points = \
                    interpolation_points = ensure_numeric(interpolation_points)
            except:
                msg = 'Interpolation points must be an N x 2 numeric array ' \
                      'or a list of points\n'
                msg += 'Got: %s.' % (str(self.interpolation_points)[:60] +
                                     '...')
                raise Exception(msg)

            # Ensure 'mesh_boundary_polygon' is defined
            mesh_boundary_polygon = None

            if triangles is not None and vertex_coordinates is not None:
                # Check that all interpolation points fall within
                # mesh boundary as defined by triangles and vertex_coordinates.
                from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh
                from anuga.geometry.polygon import outside_polygon

                # Create temporary mesh object from mesh info passed
                # into this function.
                mesh = Mesh(vertex_coordinates, triangles)
                mesh_boundary_polygon = mesh.get_boundary_polygon()

                indices = outside_polygon(interpolation_points,
                                          mesh_boundary_polygon)

                # Record result
                #self.mesh_boundary_polygon = mesh_boundary_polygon
                self.indices_outside_mesh = indices

                # Report
                if len(indices) > 0:
                    msg = 'Interpolation points in Interpolation function fall '
                    msg += 'outside specified mesh. Offending points:\n'
                    out_interp_pts = []
                    for i in indices:
                        msg += '%d: %s\n' % (i, interpolation_points[i])
                        out_interp_pts.append(
                            ensure_numeric(interpolation_points[i]))

                    if verbose is True:
                        import sys
                        from anuga.geometry.polygon import plot_polygons
                        title = ('Interpolation points fall '
                                 'outside specified mesh')
                        plot_polygons([
                            mesh_boundary_polygon, interpolation_points,
                            out_interp_pts
                        ], ['line', 'point', 'outside'],
                                      figname='points_boundary_out',
                                      label=title)

                    # Joaquim Luis suggested this as an Exception, so
                    # that the user can now what the problem is rather than
                    # looking for NaN's. However, NANs are handy as they can
                    # be ignored leaving good points for continued processing.
                    if verbose:
                        log.critical(msg)
                    #raise Exception(msg)

            elif triangles is None and vertex_coordinates is not None:  #jj
                #Dealing with sts file
                pass
            else:
                raise Exception(
                    'Sww file function requires both triangles and '
                    'vertex_coordinates. sts file file function '
                    'requires the latter.')

            # Plot boundary and interpolation points,
            # but only if if 'mesh_boundary_polygon' has data.
            if verbose is True and mesh_boundary_polygon is not None:
                import sys
                if sys.platform == 'win32':
                    from anuga.geometry.polygon import plot_polygons
                    title = ('Interpolation function: '
                             'Polygon and interpolation points')
                    plot_polygons(
                        [mesh_boundary_polygon, interpolation_points],
                        ['line', 'point'],
                        figname='points_boundary',
                        label=title)

            m = len(self.interpolation_points)
            p = len(self.time)

            for name in quantity_names:
                self.precomputed_values[name] = num.zeros((p, m), num.float)

            if verbose is True:
                log.critical('Build interpolator')

            # Build interpolator
            if triangles is not None and vertex_coordinates is not None:
                if verbose:
                    msg = 'Building interpolation matrix from source mesh '
                    msg += '(%d vertices, %d triangles)' \
                           % (vertex_coordinates.shape[0],
                              triangles.shape[0])
                    log.critical(msg)

                # This one is no longer needed for STS files
                interpol = Interpolate(vertex_coordinates,
                                       triangles,
                                       verbose=verbose)

            elif triangles is None and vertex_coordinates is not None:
                if verbose:
                    log.critical('Interpolation from STS file')

            if verbose:
                log.critical(
                    'Interpolating (%d interpolation points, %d timesteps).' %
                    (self.interpolation_points.shape[0], self.time.shape[0]))

                if time_thinning > 1:
                    log.critical('Timesteps were thinned by a factor of %d' %
                                 time_thinning)
                else:
                    log.critical()

            for i, t in enumerate(self.time):
                # Interpolate quantities at this timestep
                #if verbose and i%((p+10)/10) == 0:
                if verbose:
                    log.critical('  time step %d of %d' % (i, p))

                for name in quantity_names:
                    if len(quantities[name].shape) == 2:
                        Q = quantities[name][i, :]  # Quantities at timestep i
                    else:
                        Q = quantities[name][:]  # No time dependency

                    #if verbose and i%((p+10)/10) == 0:
                    if verbose:
                        log.critical('    quantity %s, size=%d' %
                                     (name, len(Q)))

                    # Interpolate
                    if triangles is not None and vertex_coordinates is not None:
                        result = interpol.interpolate(Q,
                                                      point_coordinates=\
                                                      self.interpolation_points,
                                                      verbose=False,
                                                      output_centroids=output_centroids)
                        self.centroids = interpol.centroids
                    elif triangles is None and vertex_coordinates is not None:
                        result = interpolate_polyline(Q,
                                                      vertex_coordinates,
                                                      gauge_neighbour_id,
                                                      interpolation_points=\
                                                          self.interpolation_points)

                    #assert len(result), len(interpolation_points)
                    self.precomputed_values[name][i, :] = result

            # Report
            if verbose:
                log.critical(self.statistics())
        else:
            # Store quantitites as is
            for name in quantity_names:
                self.precomputed_values[name] = quantities[name]
    def __init__(self,
                 time,
                 quantities,
                 quantity_names=None,
                 vertex_coordinates=None,
                 triangles=None,
                 interpolation_points=None,
                 time_thinning=1,
                 verbose=False,
                 gauge_neighbour_id=None,
                 output_centroids=False):
        """Initialise object and build spatial interpolation if required

        Time_thinning_number controls how many timesteps to use. Only timesteps
        with index%time_thinning_number == 0 will used, or in other words a
        value of 3, say, will cause the algorithm to use every third time step.
        """

        from anuga.config import time_format

        if verbose is True:
            log.critical('Interpolation_function: input checks')

        # Check temporal info
        time = ensure_numeric(time)

        if not num.alltrue(time[1:] - time[:-1] >= 0):
            # This message is time consuming to form due to the conversion of
            msg = 'Time must be a monotonuosly increasing sequence %s' % time
            raise Exception(msg)

        # Check if quantities is a single array only
        if not isinstance(quantities, dict):
            quantities = ensure_numeric(quantities)
            quantity_names = ['Attribute']

            # Make it a dictionary
            quantities = {quantity_names[0]: quantities}

        # Use keys if no names are specified
        if quantity_names is None:
            quantity_names = quantities.keys()

        # Check spatial info
        if vertex_coordinates is None:
            self.spatial = False
        else:
            # FIXME (Ole): Try ensure_numeric here -
            #              this function knows nothing about georefering.
            vertex_coordinates = ensure_absolute(vertex_coordinates)

            if triangles is not None:
                triangles = ensure_numeric(triangles)
            self.spatial = True

        if verbose is True:
            log.critical('Interpolation_function: thinning by %d'
                         % time_thinning)


        # Thin timesteps if needed
        # Note array() is used to make the thinned arrays contiguous in memory
        self.time = num.array(time[::time_thinning])
        for name in quantity_names:
            if len(quantities[name].shape) == 2:
                quantities[name] = num.array(quantities[name][::time_thinning,:])

        if verbose is True:
            log.critical('Interpolation_function: precomputing')

        # Save for use with statistics
        self.quantities_range = {}
        for name in quantity_names:
            q = quantities[name][:].flatten()
            self.quantities_range[name] = [min(q), max(q)]

        self.quantity_names = quantity_names
        self.vertex_coordinates = vertex_coordinates
        self.interpolation_points = interpolation_points

        self.index = 0    # Initial time index
        self.precomputed_values = {}
        self.centroids = []

        # Precomputed spatial interpolation if requested
        if interpolation_points is not None:
            #no longer true. sts files have spatial = True but
            #if self.spatial is False:
            #    raise Exception('Triangles and vertex_coordinates must be specified')
            #
            try:
                self.interpolation_points = \
                    interpolation_points = ensure_numeric(interpolation_points)
            except:
                msg = 'Interpolation points must be an N x 2 numeric array ' \
                      'or a list of points\n'
                msg += 'Got: %s.' %(str(self.interpolation_points)[:60] + '...')
                raise Exception(msg)

            # Ensure 'mesh_boundary_polygon' is defined
            mesh_boundary_polygon = None
            
            if triangles is not None and vertex_coordinates is not None:
                # Check that all interpolation points fall within
                # mesh boundary as defined by triangles and vertex_coordinates.
                from anuga.abstract_2d_finite_volumes.neighbour_mesh import Mesh
                from anuga.geometry.polygon import outside_polygon

                # Create temporary mesh object from mesh info passed
                # into this function.
                mesh = Mesh(vertex_coordinates, triangles)
                mesh_boundary_polygon = mesh.get_boundary_polygon()

                indices = outside_polygon(interpolation_points,
                                          mesh_boundary_polygon)

                # Record result
                #self.mesh_boundary_polygon = mesh_boundary_polygon
                self.indices_outside_mesh = indices

                # Report
                if len(indices) > 0:
                    msg = 'Interpolation points in Interpolation function fall '
                    msg += 'outside specified mesh. Offending points:\n'
                    out_interp_pts = []
                    for i in indices:
                        msg += '%d: %s\n' % (i, interpolation_points[i])
                        out_interp_pts.append(
                                    ensure_numeric(interpolation_points[i]))

                    if verbose is True:
                        import sys
                        from anuga.geometry.polygon import plot_polygons
                        title = ('Interpolation points fall '
                                 'outside specified mesh')
                        plot_polygons([mesh_boundary_polygon,
                                       interpolation_points,
                                       out_interp_pts],
                                      ['line', 'point', 'outside'],
                                      figname='points_boundary_out',
                                      label=title)

                    # Joaquim Luis suggested this as an Exception, so
                    # that the user can now what the problem is rather than
                    # looking for NaN's. However, NANs are handy as they can
                    # be ignored leaving good points for continued processing.
                    if verbose:
                        log.critical(msg)
                    #raise Exception(msg)

            elif triangles is None and vertex_coordinates is not None:    #jj
                #Dealing with sts file
                pass
            else:
                raise Exception('Sww file function requires both triangles and '
                                'vertex_coordinates. sts file file function '
                                'requires the latter.')

            # Plot boundary and interpolation points,
            # but only if if 'mesh_boundary_polygon' has data.
            if verbose is True and mesh_boundary_polygon is not None:
                import sys
                if sys.platform == 'win32':
                    from anuga.geometry.polygon import plot_polygons
                    title = ('Interpolation function: '
                             'Polygon and interpolation points')
                    plot_polygons([mesh_boundary_polygon,
                                   interpolation_points],
                                  ['line', 'point'],
                                  figname='points_boundary',
                                  label=title)

            m = len(self.interpolation_points)
            p = len(self.time)

            for name in quantity_names:
                self.precomputed_values[name] = num.zeros((p, m), num.float)

            if verbose is True:
                log.critical('Build interpolator')


            # Build interpolator
            if triangles is not None and vertex_coordinates is not None:
                if verbose:
                    msg = 'Building interpolation matrix from source mesh '
                    msg += '(%d vertices, %d triangles)' \
                           % (vertex_coordinates.shape[0],
                              triangles.shape[0])
                    log.critical(msg)

                # This one is no longer needed for STS files
                interpol = Interpolate(vertex_coordinates,
                                       triangles,
                                       verbose=verbose)

            elif triangles is None and vertex_coordinates is not None:
                if verbose:
                    log.critical('Interpolation from STS file')



            if verbose:
                log.critical('Interpolating (%d interpolation points, %d timesteps).'
                             % (self.interpolation_points.shape[0], self.time.shape[0]))

                if time_thinning > 1:
                    log.critical('Timesteps were thinned by a factor of %d'
                                 % time_thinning)
                else:
                    log.critical()

            for i, t in enumerate(self.time):
                # Interpolate quantities at this timestep
                #if verbose and i%((p+10)/10) == 0:
                if verbose:
                    log.critical('  time step %d of %d' % (i, p))

                for name in quantity_names:
                    if len(quantities[name].shape) == 2:
                        Q = quantities[name][i,:] # Quantities at timestep i
                    else:
                        Q = quantities[name][:]   # No time dependency

                    #if verbose and i%((p+10)/10) == 0:
                    if verbose:
                        log.critical('    quantity %s, size=%d' % (name, len(Q)))

                    # Interpolate
                    if triangles is not None and vertex_coordinates is not None:
                        result = interpol.interpolate(Q,
                                                      point_coordinates=\
                                                      self.interpolation_points,
                                                      verbose=False,
                                                      output_centroids=output_centroids)
                        self.centroids = interpol.centroids                                                          
                    elif triangles is None and vertex_coordinates is not None:
                        result = interpolate_polyline(Q,
                                                      vertex_coordinates,
                                                      gauge_neighbour_id,
                                                      interpolation_points=\
                                                          self.interpolation_points)

                    #assert len(result), len(interpolation_points)
                    self.precomputed_values[name][i, :] = result                                    
                    
            # Report
            if verbose:
                log.critical(self.statistics())            
        else:
            # Store quantitites as is
            for name in quantity_names:
                self.precomputed_values[name] = quantities[name]