def setup_domain(simulation):

    args = simulation.args
    verbose = args.verbose
    alg = args.alg

    N = args.N
    S = args.S
    E = args.E
    W = args.W

    from catchment_info import create_catchment_list
    from catchment_info import create_manning_list

    CatchmentList = create_catchment_list(simulation)
    ManningList = create_manning_list(simulation)

    #---------------------------------------------------------------------------
    # CREATING MESH
    #---------------------------------------------------------------------------

    bounding_polygon = [[W, S], [E, S], [E, N], [W, N]]

    interior_regions = read_polygon_list(CatchmentList)

    # FIXME: Have these in a shapefile / other file and read them in
    breaklines = [[[306612.336559443, 6193708.75358065],
                   [306604.441364239, 6193693.17994946]],
                  [[306977.886673843, 6193753.44134088],
                   [306978.027867398, 6193710.94208076]],
                  [[306956.001672788, 6193750.89985688],
                   [306956.707640564, 6193706.14149989]],
                  [[306627.303076293, 6193697.45809624],
                   [306620.525785644, 6193683.62112783]],
                  [[307236.83565407, 6193741.01630802],
                   [307231.682089306, 6193721.03741996]],
                  [[307224.975395434, 6193742.71063068],
                   [307220.880782334, 6193723.36711362]],
                  [[307624.764946969, 6193615.98941489],
                   [307617.98765632, 6193601.44647871]],
                  [[307613.328268998, 6193623.19028621],
                   [307607.751123568, 6193610.97704368]]]

    # Make the mesh
    create_mesh_from_regions(bounding_polygon,
                             boundary_tags={
                                 'south': [0],
                                 'east': [1],
                                 'north': [2],
                                 'west': [3]
                             },
                             maximum_triangle_area=args.maximum_triangle_area,
                             interior_regions=interior_regions,
                             filename=args.meshname,
                             breaklines=breaklines,
                             use_cache=False,
                             verbose=True)

    #---------------------------------------------------------------------------
    # SETUP COMPUTATIONAL DOMAIN
    #---------------------------------------------------------------------------

    domain = Domain(args.meshname, use_cache=False, verbose=True)

    domain.set_flow_algorithm(alg)

    if (not domain.get_using_discontinuous_elevation()):
        raise Exception, 'This model run relies on a discontinuous elevation solver (because of how topography is set up)'

    domain.set_datadir(args.model_output_dir)
    domain.set_name(args.outname)

    print domain.statistics()

    #------------------------------------------------------------------------------
    # APPLY MANNING'S ROUGHNESSES
    #------------------------------------------------------------------------------

    if verbose: print 'Calculating complicated polygon friction function'
    friction_list = read_polygon_list(ManningList)
    domain.set_quantity(
        'friction',
        Polygon_function(friction_list,
                         default=args.base_friction,
                         geo_reference=domain.geo_reference))

    # Set a Initial Water Level over the Domain
    domain.set_quantity('stage', 0)

    if verbose: print 'Setting up elevation interpolation function'
    from anuga.utilities.quantity_setting_functions import make_nearestNeighbour_quantity_function

    if verbose: print 'READING %s' % args.basename + '.csv'
    elev_xyz = numpy.genfromtxt(fname=args.basename + '.csv', delimiter=',')

    # Use nearest-neighbour interpolation of elevation
    if verbose: print 'CREATING nearest neighbour interpolator'
    elev_fun_wrapper = make_nearestNeighbour_quantity_function(
        elev_xyz, domain)

    if verbose: print 'Applying elevation interpolation function'
    domain.set_quantity('elevation', elev_fun_wrapper, location='centroids')

    return domain
def setup_domain(simulation):
    
    args = simulation.args
    verbose = args.verbose
    alg = args.alg
    
    N = args.N
    S = args.S
    E = args.E
    W = args.W
    
    from catchment_info import create_catchment_list
    from catchment_info import create_manning_list
    
    CatchmentList = create_catchment_list(simulation)
    ManningList = create_manning_list(simulation)
    
    #------------------------------------------------------------------------------
    # CREATING MESH
    #------------------------------------------------------------------------------
    
    bounding_polygon = [[W, S], [E, S], [E, N], [W, N]]
    #interior_regions = read_polygon_dir(CatchmentDictionary, join('Model', 'Bdy'))
    interior_regions = read_polygon_list(CatchmentList)

    # FIXME: Have these in a shapefile / other file and read them in    
    breaklines=[[[306612.336559443,6193708.75358065],
                 [306604.441364239,6193693.17994946]],
                [[306977.886673843,6193753.44134088],
                 [306978.027867398,6193710.94208076]],
                [[306956.001672788,6193750.89985688],
                 [306956.707640564,6193706.14149989]],
                [[306627.303076293,6193697.45809624],
                 [306620.525785644,6193683.62112783]],
                [[307236.83565407,6193741.01630802],
                 [307231.682089306,6193721.03741996]],
                [[307224.975395434,6193742.71063068],
                 [307220.880782334,6193723.36711362]],
                [[307624.764946969,6193615.98941489],
                 [307617.98765632,6193601.44647871]],
                [[307613.328268998,6193623.19028621],
                 [307607.751123568,6193610.97704368]]]

    # Make the mesh
    create_mesh_from_regions(bounding_polygon, 
        boundary_tags={'south': [0], 'east': [1], 'north': [2], 'west': [3]},
        maximum_triangle_area=args.maximum_triangle_area,
        interior_regions=interior_regions,
        filename=args.meshname,
        breaklines=breaklines,
        use_cache=False,
        verbose=True)
    
    #------------------------------------------------------------------------------
    # SETUP COMPUTATIONAL DOMAIN
    #------------------------------------------------------------------------------
    
    domain = Domain(args.meshname, use_cache=False, verbose=True)

    domain.set_flow_algorithm(alg)

    if(not domain.get_using_discontinuous_elevation()):
        raise Exception, 'This model run relies on a discontinuous elevation solver (because of how topography is set up)'

    domain.set_datadir(args.model_output_dir)
    domain.set_name(args.outname)
        
    print domain.statistics()
    
    #------------------------------------------------------------------------------
    # APPLY MANNING'S ROUGHNESSES
    #------------------------------------------------------------------------------
    
    if verbose: print 'Calculating complicated polygon friction function'
    friction_list = read_polygon_list(ManningList)
    domain.set_quantity('friction', Polygon_function(friction_list, default=args.base_friction, geo_reference=domain.geo_reference))
    
    # Set a Initial Water Level over the Domain
    domain.set_quantity('stage', 0)
   
    # Decompress the zip file to make a csv for reading 
    zipfile.ZipFile('DEM_bridges/towradgi_cleaner.zip').extract('towradgi.csv',path='DEM_bridges/')

    if verbose: print 'Setting up elevation interpolation function'
    from anuga.utilities.quantity_setting_functions import make_nearestNeighbour_quantity_function
    elev_xyz=numpy.genfromtxt(fname=args.basename+'.csv',delimiter=',')

    # Use nearest-neighbour interpolation of elevation 
    elev_fun_wrapper=make_nearestNeighbour_quantity_function(elev_xyz,domain)
    if verbose: print 'Applying elevation interpolation function'    
    domain.set_quantity('elevation', elev_fun_wrapper, location='centroids')

    os.remove('DEM_bridges/towradgi.csv') # Clean up csv file
    
    return domain
Esempio n. 3
0
    def test_make_nearestNeighbour_quantity_function(self):

        domain = self.create_domain(1.0, 0.0)

        # Make a set of points in 'physical space' ranging from x,y,x+y-min(x)-min(y)
        xR = numpy.linspace(minX, minX + 100., 101)
        yR = numpy.linspace(minY, minY + 100., 101)
        xR, yR = numpy.meshgrid(xR, yR)
        xR = xR.flatten()
        yR = yR.flatten()
        zR = xR + yR - minX - minY
        inPts = numpy.vstack([xR, yR, zR]).transpose()

        F = qs.make_nearestNeighbour_quantity_function(
            inPts,
            domain,
            threshold_distance=9.0e+100,
            background_value=9.0e+100)

        # Test that F evaluated in 'ANUGA coordinates' [lower-left = 0,0] is correct
        xGet = numpy.array([0., 10., 10., 0., 100.]) + 0.1
        yGet = numpy.array([0., 0., 20., 90., 100.]) + 0.1
        expected = numpy.floor(xGet + yGet)
        output = F(xGet, yGet)
        assert (numpy.allclose(output, expected))

        # Test with 3 nearest neighbours at points which are exactly on data points
        F = qs.make_nearestNeighbour_quantity_function(
            inPts,
            domain,
            threshold_distance=9.0e+100,
            background_value=9.0e+100,
            k_nearest_neighbours=3)

        xGet = numpy.array([0., 10., 10., 0., 100.])
        yGet = numpy.array([0., 0., 20., 90., 100.])
        expected = xGet + yGet
        output = F(xGet, yGet)
        assert (numpy.allclose(output, expected))

        # Test with 4 nearest neighbours, at points which are not exactly on data points
        F = qs.make_nearestNeighbour_quantity_function(
            inPts,
            domain,
            threshold_distance=9.0e+100,
            background_value=9.0e+100,
            k_nearest_neighbours=4)
        # Test at non-trivial location
        xGet = numpy.array([0., 10., 10., 0., 99.]) + 0.5
        yGet = numpy.array([0., 0., 20., 90., 99.]) + 0.5
        expected = xGet + yGet
        output = F(xGet, yGet)
        assert (numpy.allclose(output, expected))

        #################################################################################
        # Test that background_value / threshold_distance work ok

        # Make a set of points in 'physical space' ranging from x,y,x+y-min(x)-min(y)
        xR = numpy.linspace(minX + 10., minX + 90., 81)
        yR = numpy.linspace(minY + 10., minY + 90., 81)
        xR, yR = numpy.meshgrid(xR, yR)
        xR = xR.flatten()
        yR = yR.flatten()
        zR = xR + yR - minX - minY
        inPts = numpy.vstack([xR, yR, zR]).transpose()

        F = qs.make_nearestNeighbour_quantity_function(
            inPts, domain, threshold_distance=6., background_value=9.0e+100)

        # Test that F evaluated in 'ANUGA coordinates' [lower-left = 0,0] is correct
        #
        # Now points 1 and 2 and 5 are outside the threshold_distance
        xGet = numpy.array([0., 10., 10., 10., 100.])
        yGet = numpy.array([0., 3.999, 20., 90., 100.])
        expected = xGet + yGet
        expected[0] = 9.0e+100
        expected[1] = 9.0e+100
        expected[4] = 9.0e+100
        output = F(xGet, yGet)
        assert (numpy.allclose(output, expected))

        return
    def test_make_nearestNeighbour_quantity_function(self):

        domain=self.create_domain(1.0, 0.0)

        # Make a set of points in 'physical space' ranging from x,y,x+y-min(x)-min(y)
        xR=numpy.linspace(minX, minX+100., 101)
        yR=numpy.linspace(minY, minY+100., 101)
        xR,yR=numpy.meshgrid(xR,yR)
        xR=xR.flatten()
        yR=yR.flatten()
        zR=xR+yR-minX-minY
        inPts=numpy.vstack([xR,yR,zR]).transpose()

        F = qs.make_nearestNeighbour_quantity_function(inPts, domain, 
                threshold_distance = 9.0e+100, background_value = 9.0e+100)

        # Test that F evaluated in 'ANUGA coordinates' [lower-left = 0,0] is correct
        xGet=numpy.array([0., 10., 10., 0., 100.]) + 0.1
        yGet=numpy.array([0., 0., 20.,90., 100. ]) + 0.1
        expected=numpy.floor(xGet+yGet)
        output=F(xGet,yGet)
        assert(numpy.allclose(output,expected))


        # Test with 3 nearest neighbours at points which are exactly on data points
        F = qs.make_nearestNeighbour_quantity_function(inPts, domain, 
                threshold_distance = 9.0e+100, background_value = 9.0e+100,
                k_nearest_neighbours = 3)

        xGet=numpy.array([0., 10., 10., 0., 100.])
        yGet=numpy.array([0., 0., 20.,90., 100. ])
        expected=xGet+yGet
        output=F(xGet,yGet)
        assert(numpy.allclose(output,expected))

        # Test with 4 nearest neighbours, at points which are not exactly on data points  
        F = qs.make_nearestNeighbour_quantity_function(inPts, domain, 
                threshold_distance = 9.0e+100, background_value = 9.0e+100,
                k_nearest_neighbours = 4)
        # Test at non-trivial location
        xGet=numpy.array([0., 10., 10., 0., 99.]) + 0.5
        yGet=numpy.array([0., 0., 20.,90., 99. ]) + 0.5
        expected=xGet+yGet
        output=F(xGet,yGet)
        assert(numpy.allclose(output,expected))

        
        #################################################################################
        # Test that background_value / threshold_distance work ok

        # Make a set of points in 'physical space' ranging from x,y,x+y-min(x)-min(y)
        xR=numpy.linspace(minX+10., minX+90., 81)
        yR=numpy.linspace(minY+10., minY+90., 81)
        xR,yR=numpy.meshgrid(xR,yR)
        xR=xR.flatten()
        yR=yR.flatten()
        zR=xR+yR-minX-minY
        inPts=numpy.vstack([xR,yR,zR]).transpose()

        F = qs.make_nearestNeighbour_quantity_function(inPts, domain, 
                threshold_distance = 6., background_value = 9.0e+100)

        # Test that F evaluated in 'ANUGA coordinates' [lower-left = 0,0] is correct
        #
        # Now points 1 and 2 and 5 are outside the threshold_distance
        xGet=numpy.array( [0., 10.,   10.,10., 100. ] )
        yGet=numpy.array( [0., 3.999, 20.,90., 100. ] )
        expected=xGet+yGet
        expected[0] = 9.0e+100
        expected[1] = 9.0e+100
        expected[4] = 9.0e+100
        output=F(xGet,yGet)
        assert(numpy.allclose(output,expected))

        return