def load_model(self): self.model = GPT2SequenceClassifierModel( hidden_size=self.embed_dim, num_classes=len(self.classes), gpt_model_name=self.model_name, max_seq_length=self.max_seq_length, finetune_GPT2=self.finetune_GPT2) self.model.to(device) self.opt = self.optimizer(self.model.parameters()) if (self.checkpoint_path): # grab model and optimizer from checkpoint model_chk, opt_chk, self.current_ephoc, amp_chk = self.load_checkpoint( ) print("continuing training from checkpoint at ephoc: ", self.current_ephoc) self.model.load_state_dict(model_chk) self.opt.load_state_dict(opt_chk) if (amp_chk): amp.load_state_dict(amp_chk) else: self.current_ephoc = 0 if self.fp16: from apex import amp # inspired by: https://github.com/huggingface/transformers/blob/master/examples/question-answering/run_squad.py # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. amp.register_half_function(torch, "einsum") print("Converting models and optimizer to FP16") self.model, self.opt = amp.initialize(self.model, self.opt, opt_level="O1")
def main(): parser = get_parser() args = parser.parse_args() if (os.path.exists(args.output_dir) and os.listdir(args.output_dir) and not args.overwrite_output_dir): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Set device args.device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO) logging.getLogger("transformers.generation_utils").setLevel(logging.ERROR) # Load pretrained question generation model and tokenizer GPT2_tokenizer = GPT2Tokenizer.from_pretrained( args.question_generation_model, do_lower_case=args.do_lower_case) GPT2_model = GPT2LMHeadModel.from_pretrained( args.question_generation_model) GPT2_model.prepare_inputs_for_generation = prepare_inputs_for_generation GPT2_model.eval() GPT2_model.to(args.device) BERT_tokenizer = BertTokenizer.from_pretrained( args.answering_model, do_lower_case=args.do_lower_case) BERT_model = BertForQuestionAnswering.from_pretrained(args.answering_model) BERT_model.eval() BERT_model.to(args.device) logging.info("Parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: from apex import amp amp.register_half_function(torch, "einsum") GPT2_model = amp.initialize(GPT2_model, opt_level=args.fp16_opt_level) BERT_model = amp.initialize(BERT_model, opt_level=args.fp16_opt_level) except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) generate(args, GPT2_tokenizer, GPT2_model, BERT_tokenizer, BERT_model)
def __init__(self, args, device): print('initializing Reader...', flush=True) # self.model = IterBertForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) # self.model = IterBertForQuestionAnsweringConfidenceV2.from_pretrained(args.reader_path, num_labels=4, no_masking=True) # self.model = IterBertForQuestionAnsweringConfidenceV3.from_pretrained(args.reader_path, num_labels=4, no_masking=True) # self.model = IterBertForQuestionAnsweringConfidenceV4.from_pretrained(args.reader_path, num_labels=4, no_masking=True) # self.model = RobertaForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) if args.reader_version == 'bert': self.model = BertForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'iter': self.model = IterBertForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'iter_v2': self.model = IterBertForQuestionAnsweringConfidenceV2.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'iter_v3': self.model = IterBertForQuestionAnsweringConfidenceV3.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'iter_v4': self.model = IterBertForQuestionAnsweringConfidenceV4.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'roberta': self.model = RobertaForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) elif args.reader_version == 'roberta_iter': self.model = IterRobertaForQuestionAnsweringConfidence.from_pretrained(args.reader_path, num_labels=4, no_masking=True) else: raise RuntimeError() if args.reader_version == 'bert': self.tokenizer = BertTokenizer.from_pretrained(args.reader_path, do_lower_case=args.do_lower_case) else: self.tokenizer = AutoTokenizer.from_pretrained(args.reader_path) self.device = device self.model.to(device) if args.fp16: from apex import amp if args.fp16_opt_level == 'O1': amp.register_half_function(torch, "einsum") self.model = amp.initialize(self.model, opt_level=args.fp16_opt_level) self.model.eval() print('Done!', flush=True)
def get_amp(fp16): """This function ensures that fp16 execution of torch.einsum is enabled if args.fp16 is set. Otherwise, it'll default to "promote" mode, where the operations are in fp32. Note that running `--fp16_opt_level="O2"` will remove the need for this code. """ # Before we do anything with models, we want to if fp16: try: from apex import amp amp.register_half_function(torch, "einsum") except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex") else: amp = None return amp
def __init__(self, model: GWNet, scaler, lrate, wdecay, clip=5, lr_decay_rate=.97, fp16='', end_conv_lr=None): self.model = model if end_conv_lr: end_conv2, other_params = model.conv_group groups = [{'params': end_conv2, 'lr': end_conv_lr}] if lrate > 0: groups.append({'params': other_params}) self.model.freeze_group_b() self.optimizer = optim.Adam(groups, lr=lrate, weight_decay=wdecay) else: self.optimizer = optim.Adam(self.model.parameters(), lr=lrate, weight_decay=wdecay) self.scaler = scaler self.clip = clip self.fp16 = fp16 l1 = lambda epoch: lr_decay_rate**epoch self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=l1) if self.fp16: try: from apex import amp # Apex is only required if we use fp16 training except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) amp.register_half_function(torch, 'einsum') self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level=self.fp16)
def __init__(self, in_feature=128, out_feature=10575, s=32.0, m=0.50, easy_margin=False): super(ArcMarginProduct, self).__init__() self.in_feature = in_feature self.out_feature = out_feature self.s = s self.m = m self.weight = Parameter(torch.Tensor(out_feature, in_feature)) nn.init.xavier_uniform_(self.weight) self.easy_margin = easy_margin self.cos_m = math.cos(m) self.sin_m = math.sin(m) # make the function cos(theta+m) monotonic decreasing while theta in [0°,180°] self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m if args.use_amp == True: amp.register_half_function(torch, 'where')
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default='bert-base-uncased', type=str, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument( '--task', type=str, default=None, required=True, help="Task code in {hotpot_open, hotpot_distractor, squad, nq}") # Other parameters parser.add_argument( "--max_seq_length", default=378, type=int, help= "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, and sequences shorter \n" "than this will be padded.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=1, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=5, type=int, help="Total batch size for eval.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam. (def: 5e-5)") parser.add_argument("--num_train_epochs", default=5.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10%% of training.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument('--local_rank', default=-1, type=int) # RNN graph retriever-specific parameters parser.add_argument("--example_limit", default=None, type=int) parser.add_argument("--max_para_num", default=10, type=int) parser.add_argument( "--neg_chunk", default=8, type=int, help="The chunk size of negative examples during training (to " "reduce GPU memory consumption with negative sampling)") parser.add_argument( "--eval_chunk", default=100000, type=int, help= "The chunk size of evaluation examples (to reduce RAM consumption during evaluation)" ) parser.add_argument( "--split_chunk", default=300, type=int, help= "The chunk size of BERT encoding during inference (to reduce GPU memory consumption)" ) parser.add_argument('--train_file_path', type=str, default=None, help="File path to the training data") parser.add_argument('--dev_file_path', type=str, default=None, help="File path to the eval data") parser.add_argument('--beam', type=int, default=1, help="Beam size") parser.add_argument('--min_select_num', type=int, default=1, help="Minimum number of selected paragraphs") parser.add_argument('--max_select_num', type=int, default=3, help="Maximum number of selected paragraphs") parser.add_argument( "--use_redundant", action='store_true', help="Whether to use simulated seqs (only for training)") parser.add_argument( "--use_multiple_redundant", action='store_true', help="Whether to use multiple simulated seqs (only for training)") parser.add_argument( '--max_redundant_num', type=int, default=100000, help= "Whether to limit the number of the initial TF-IDF pool (only for open-domain eval)" ) parser.add_argument( "--no_links", action='store_true', help= "Whether to omit any links (or in other words, only use TF-IDF-based paragraphs)" ) parser.add_argument("--pruning_by_links", action='store_true', help="Whether to do pruning by links (and top 1)") parser.add_argument( "--expand_links", action='store_true', help= "Whether to expand links with paragraphs in the same article (for NQ)") parser.add_argument( '--tfidf_limit', type=int, default=None, help= "Whether to limit the number of the initial TF-IDF pool (only for open-domain eval)" ) parser.add_argument("--pred_file", default=None, type=str, help="File name to write paragraph selection results") parser.add_argument("--tagme", action='store_true', help="Whether to use tagme at inference") parser.add_argument( '--topk', type=int, default=2, help="Whether to use how many paragraphs from the previous steps") parser.add_argument( "--model_suffix", default=None, type=str, help="Suffix to load a model file ('pytorch_model_' + suffix +'.bin')") parser.add_argument("--db_save_path", default=None, type=str, help="File path to DB") parser.add_argument("--fp16", default=False, action='store_true') parser.add_argument("--fp16_opt_level", default="O1", type=str) parser.add_argument("--do_label", default=False, action='store_true', help="For pre-processing features only.") parser.add_argument("--oss_cache_dir", default=None, type=str) parser.add_argument("--cache_dir", default=None, type=str) parser.add_argument("--dist", default=False, action='store_true', help='use distributed training.') parser.add_argument("--save_steps", default=5000, type=int) parser.add_argument("--resume", default=None, type=int) parser.add_argument("--oss_pretrain", default=None, type=str) parser.add_argument("--model_version", default='v1', type=str) parser.add_argument("--disable_rnn_layer_norm", default=False, action='store_true') args = parser.parse_args() if args.dist: dist.init_process_group(backend='nccl') print(f"local rank: {args.local_rank}") print(f"global rank: {dist.get_rank()}") print(f"world size: {dist.get_world_size()}") if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of synchronizing nodes/GPUs dist.init_process_group(backend='nccl') if args.dist: global_rank = dist.get_rank() world_size = dist.get_world_size() if world_size > 1: args.local_rank = global_rank if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if args.train_file_path is not None: do_train = True if os.path.exists(args.output_dir) and os.listdir(args.output_dir): raise ValueError( "Output directory ({}) already exists and is not empty.". format(args.output_dir)) if args.local_rank in [-1, 0]: os.makedirs(args.output_dir, exist_ok=True) elif args.dev_file_path is not None: do_train = False else: raise ValueError( 'One of train_file_path: {} or dev_file_path: {} must be non-None'. format(args.train_file_path, args.dev_file_path)) processor = DataProcessor() # Configurations of the graph retriever graph_retriever_config = GraphRetrieverConfig( example_limit=args.example_limit, task=args.task, max_seq_length=args.max_seq_length, max_select_num=args.max_select_num, max_para_num=args.max_para_num, tfidf_limit=args.tfidf_limit, train_file_path=args.train_file_path, use_redundant=args.use_redundant, use_multiple_redundant=args.use_multiple_redundant, max_redundant_num=args.max_redundant_num, dev_file_path=args.dev_file_path, beam=args.beam, min_select_num=args.min_select_num, no_links=args.no_links, pruning_by_links=args.pruning_by_links, expand_links=args.expand_links, eval_chunk=args.eval_chunk, tagme=args.tagme, topk=args.topk, db_save_path=args.db_save_path, disable_rnn_layer_norm=args.disable_rnn_layer_norm) logger.info(graph_retriever_config) logger.info(args) tokenizer = AutoTokenizer.from_pretrained(args.bert_model) if args.model_version == 'roberta': from modeling_graph_retriever_roberta import RobertaForGraphRetriever elif args.model_version == 'v3': from modeling_graph_retriever_roberta import RobertaForGraphRetrieverIterV3 as RobertaForGraphRetriever else: raise RuntimeError() ############################## # Training # ############################## if do_train: _model_state_dict = None if args.oss_pretrain is not None: _model_state_dict = torch.load(load_pretrain_from_oss( args.oss_pretrain), map_location='cpu') logger.info(f"Loaded pretrained model from {args.oss_pretrain}") if args.resume is not None: _model_state_dict = torch.load(load_buffer_from_oss( os.path.join(args.oss_cache_dir, f"pytorch_model_{args.resume}.bin")), map_location='cpu') model = RobertaForGraphRetriever.from_pretrained( args.bert_model, graph_retriever_config=graph_retriever_config, state_dict=_model_state_dict) model.to(device) global_step = 0 POSITIVE = 1.0 NEGATIVE = 0.0 _cache_file_name = f"cache_roberta_train_{args.max_seq_length}_{args.max_para_num}" _examples_cache_file_name = f"examples_{_cache_file_name}" _features_cache_file_name = f"features_{_cache_file_name}" # Load training examples logger.info(f"Loading training examples and features.") try: if args.cache_dir is not None and os.path.exists( os.path.join(args.cache_dir, _features_cache_file_name)): logger.info( f"Loading pre-processed features from {os.path.join(args.cache_dir, _features_cache_file_name)}" ) train_features = torch.load( os.path.join(args.cache_dir, _features_cache_file_name)) else: # train_examples = torch.load(load_buffer_from_oss(os.path.join(oss_features_cache_dir, # _examples_cache_file_name))) train_features = torch.load( load_buffer_from_oss( os.path.join(oss_features_cache_dir, _features_cache_file_name))) logger.info( f"Pre-processed features are loaded from oss: " f"{os.path.join(oss_features_cache_dir, _features_cache_file_name)}" ) except: train_examples = processor.get_train_examples( graph_retriever_config) train_features = convert_examples_to_features( train_examples, args.max_seq_length, args.max_para_num, graph_retriever_config, tokenizer, train=True) logger.info( f"Saving pre-processed features into oss: {oss_features_cache_dir}" ) torch_save_to_oss( train_examples, os.path.join(oss_features_cache_dir, _examples_cache_file_name)) torch_save_to_oss( train_features, os.path.join(oss_features_cache_dir, _features_cache_file_name)) if args.do_label: logger.info("Finished.") return # len(train_examples) and len(train_features) can be different, depending on the redundant setting num_train_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'layer_norm'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_steps if args.local_rank != -1: t_total = t_total // dist.get_world_size() optimizer = AdamW(optimizer_grouped_parameters, betas=(0.9, 0.98), lr=args.learning_rate) scheduler = get_linear_schedule_with_warmup( optimizer, int(t_total * args.warmup_proportion), t_total) logger.info(optimizer) if args.fp16: from apex import amp amp.register_half_function(torch, "einsum") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) if args.local_rank != -1: if args.fp16_opt_level == 'O2': try: import apex model = apex.parallel.DistributedDataParallel( model, delay_allreduce=True) except ImportError: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) else: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) if n_gpu > 1: model = torch.nn.DataParallel(model) if args.resume is not None: _amp_state_dict = os.path.join(args.oss_cache_dir, f"amp_{args.resume}.bin") _optimizer_state_dict = os.path.join( args.oss_cache_dir, f"optimizer_{args.resume}.pt") _scheduler_state_dict = os.path.join( args.oss_cache_dir, f"scheduler_{args.resume}.pt") amp.load_state_dict( torch.load(load_buffer_from_oss(_amp_state_dict))) optimizer.load_state_dict( torch.load(load_buffer_from_oss(_optimizer_state_dict))) scheduler.load_state_dict( torch.load(load_buffer_from_oss(_scheduler_state_dict))) logger.info(f"Loaded resumed state dict of step {args.resume}") logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_features)) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (dist.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) model.train() epc = 0 # test if args.local_rank in [-1, 0]: if args.fp16: amp_file = os.path.join(args.oss_cache_dir, f"amp_{global_step}.bin") torch_save_to_oss(amp.state_dict(), amp_file) optimizer_file = os.path.join(args.oss_cache_dir, f"optimizer_{global_step}.pt") torch_save_to_oss(optimizer.state_dict(), optimizer_file) scheduler_file = os.path.join(args.oss_cache_dir, f"scheduler_{global_step}.pt") torch_save_to_oss(scheduler.state_dict(), scheduler_file) tr_loss = 0 for _ in range(int(args.num_train_epochs)): logger.info('Epoch ' + str(epc + 1)) TOTAL_NUM = len(train_features) train_start_index = 0 CHUNK_NUM = 8 train_chunk = TOTAL_NUM // CHUNK_NUM chunk_index = 0 random.shuffle(train_features) save_retry = False while train_start_index < TOTAL_NUM: train_end_index = min(train_start_index + train_chunk - 1, TOTAL_NUM - 1) chunk_len = train_end_index - train_start_index + 1 if args.resume is not None and global_step < args.resume: _chunk_steps = int( math.ceil(chunk_len * 1.0 / args.train_batch_size / (1 if args.local_rank == -1 else dist.get_world_size()))) _chunk_steps = _chunk_steps // args.gradient_accumulation_steps if global_step + _chunk_steps <= args.resume: global_step += _chunk_steps train_start_index = train_end_index + 1 continue train_features_ = train_features[ train_start_index:train_start_index + chunk_len] all_input_ids = torch.tensor( [f.input_ids for f in train_features_], dtype=torch.long) all_input_masks = torch.tensor( [f.input_masks for f in train_features_], dtype=torch.long) all_segment_ids = torch.tensor( [f.segment_ids for f in train_features_], dtype=torch.long) all_output_masks = torch.tensor( [f.output_masks for f in train_features_], dtype=torch.float) all_num_paragraphs = torch.tensor( [f.num_paragraphs for f in train_features_], dtype=torch.long) all_num_steps = torch.tensor( [f.num_steps for f in train_features_], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_masks, all_segment_ids, all_output_masks, all_num_paragraphs, all_num_steps) if args.local_rank != -1: train_sampler = torch.utils.data.DistributedSampler( train_data) else: train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, pin_memory=True, num_workers=4) if args.local_rank != -1: train_dataloader.sampler.set_epoch(epc) logger.info('Examples from ' + str(train_start_index) + ' to ' + str(train_end_index)) for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): if args.resume is not None and global_step < args.resume: if (step + 1) % args.gradient_accumulation_steps == 0: global_step += 1 continue input_masks = batch[1] batch_max_len = input_masks.sum(dim=2).max().item() num_paragraphs = batch[4] batch_max_para_num = num_paragraphs.max().item() num_steps = batch[5] batch_max_steps = num_steps.max().item() # output_masks_cpu = (batch[3])[:, :batch_max_steps, :batch_max_para_num + 1] batch = tuple(t.to(device) for t in batch) input_ids, input_masks, segment_ids, output_masks, _, _ = batch B = input_ids.size(0) input_ids = input_ids[:, :batch_max_para_num, : batch_max_len] input_masks = input_masks[:, :batch_max_para_num, : batch_max_len] segment_ids = segment_ids[:, :batch_max_para_num, : batch_max_len] output_masks = output_masks[:, :batch_max_steps, : batch_max_para_num + 1] # 1 for EOE target = torch.zeros(output_masks.size()).fill_( NEGATIVE) # (B, NUM_STEPS, |P|+1) <- 1 for EOE for i in range(B): output_masks[i, :num_steps[i], -1] = 1.0 # for EOE for j in range(num_steps[i].item() - 1): target[i, j, j].fill_(POSITIVE) target[i, num_steps[i] - 1, -1].fill_(POSITIVE) target = target.to(device) neg_start = batch_max_steps - 1 while neg_start < batch_max_para_num: neg_end = min(neg_start + args.neg_chunk - 1, batch_max_para_num - 1) neg_len = (neg_end - neg_start + 1) input_ids_ = torch.cat( (input_ids[:, :batch_max_steps - 1, :], input_ids[:, neg_start:neg_start + neg_len, :]), dim=1) input_masks_ = torch.cat( (input_masks[:, :batch_max_steps - 1, :], input_masks[:, neg_start:neg_start + neg_len, :]), dim=1) segment_ids_ = torch.cat( (segment_ids[:, :batch_max_steps - 1, :], segment_ids[:, neg_start:neg_start + neg_len, :]), dim=1) output_masks_ = torch.cat( (output_masks[:, :, :batch_max_steps - 1], output_masks[:, :, neg_start:neg_start + neg_len], output_masks[:, :, batch_max_para_num: batch_max_para_num + 1]), dim=2) target_ = torch.cat( (target[:, :, :batch_max_steps - 1], target[:, :, neg_start:neg_start + neg_len], target[:, :, batch_max_para_num:batch_max_para_num + 1]), dim=2) if neg_start != batch_max_steps - 1: output_masks_[:, :, :batch_max_steps - 1] = 0.0 output_masks_[:, :, -1] = 0.0 loss = model(input_ids_, segment_ids_, input_masks_, output_masks_, target_, batch_max_steps) if n_gpu > 1: loss = loss.mean( ) # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() neg_start = neg_end + 1 # del input_ids_ # del input_masks_ # del segment_ids_ # del output_masks_ # del target_ if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), 1.0) else: torch.nn.utils.clip_grad_norm_( model.parameters(), 1.0) optimizer.step() scheduler.step() # optimizer.zero_grad() model.zero_grad() global_step += 1 if global_step % 50 == 0: _cur_steps = global_step if args.resume is None else global_step - args.resume logger.info( f"Training loss: {tr_loss / _cur_steps}\t" f"Learning rate: {scheduler.get_lr()[0]}\t" f"Global step: {global_step}") if global_step % args.save_steps == 0: if args.local_rank in [-1, 0]: model_to_save = model.module if hasattr( model, 'module') else model output_model_file = os.path.join( args.oss_cache_dir, f"pytorch_model_{global_step}.bin") torch_save_to_oss(model_to_save.state_dict(), output_model_file) _suffix = "" if args.local_rank == -1 else f"_{args.local_rank}" if args.fp16: amp_file = os.path.join( args.oss_cache_dir, f"amp_{global_step}{_suffix}.bin") torch_save_to_oss(amp.state_dict(), amp_file) optimizer_file = os.path.join( args.oss_cache_dir, f"optimizer_{global_step}{_suffix}.pt") torch_save_to_oss(optimizer.state_dict(), optimizer_file) scheduler_file = os.path.join( args.oss_cache_dir, f"scheduler_{global_step}{_suffix}.pt") torch_save_to_oss(scheduler.state_dict(), scheduler_file) logger.info( f"checkpoint of step {global_step} is saved to oss." ) # del input_ids # del input_masks # del segment_ids # del output_masks # del target # del batch chunk_index += 1 train_start_index = train_end_index + 1 # Save the model at the half of the epoch if (chunk_index == CHUNK_NUM // 2 or save_retry) and args.local_rank in [-1, 0]: status = save(model, args.output_dir, str(epc + 0.5)) save_retry = (not status) del train_features_ del all_input_ids del all_input_masks del all_segment_ids del all_output_masks del all_num_paragraphs del all_num_steps del train_data del train_sampler del train_dataloader gc.collect() # Save the model at the end of the epoch if args.local_rank in [-1, 0]: save(model, args.output_dir, str(epc + 1)) # model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self # output_model_file = os.path.join(args.oss_cache_dir, "pytorch_model_" + str(epc + 1) + ".bin") # torch_save_to_oss(model_to_save.state_dict(), output_model_file) epc += 1 if do_train: return ############################## # Evaluation # ############################## assert args.model_suffix is not None if graph_retriever_config.db_save_path is not None: import sys sys.path.append('../') from pipeline.tfidf_retriever import TfidfRetriever tfidf_retriever = TfidfRetriever(graph_retriever_config.db_save_path, None) else: tfidf_retriever = None if args.oss_cache_dir is not None: file_name = 'pytorch_model_' + args.model_suffix + '.bin' model_state_dict = torch.load( load_buffer_from_oss(os.path.join(args.oss_cache_dir, file_name))) else: model_state_dict = load(args.output_dir, args.model_suffix) model = RobertaForGraphRetriever.from_pretrained( args.bert_model, state_dict=model_state_dict, graph_retriever_config=graph_retriever_config) model.to(device) model.eval() if args.pred_file is not None: pred_output = [] eval_examples = processor.get_dev_examples(graph_retriever_config) logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) TOTAL_NUM = len(eval_examples) eval_start_index = 0 while eval_start_index < TOTAL_NUM: eval_end_index = min( eval_start_index + graph_retriever_config.eval_chunk - 1, TOTAL_NUM - 1) chunk_len = eval_end_index - eval_start_index + 1 eval_features = convert_examples_to_features( eval_examples[eval_start_index:eval_start_index + chunk_len], args.max_seq_length, args.max_para_num, graph_retriever_config, tokenizer) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_masks = torch.tensor([f.input_masks for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_output_masks = torch.tensor( [f.output_masks for f in eval_features], dtype=torch.float) all_num_paragraphs = torch.tensor( [f.num_paragraphs for f in eval_features], dtype=torch.long) all_num_steps = torch.tensor([f.num_steps for f in eval_features], dtype=torch.long) all_ex_indices = torch.tensor([f.ex_index for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_masks, all_segment_ids, all_output_masks, all_num_paragraphs, all_num_steps, all_ex_indices) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) for input_ids, input_masks, segment_ids, output_masks, num_paragraphs, num_steps, ex_indices in tqdm( eval_dataloader, desc="Evaluating"): batch_max_len = input_masks.sum(dim=2).max().item() batch_max_para_num = num_paragraphs.max().item() batch_max_steps = num_steps.max().item() input_ids = input_ids[:, :batch_max_para_num, :batch_max_len] input_masks = input_masks[:, :batch_max_para_num, :batch_max_len] segment_ids = segment_ids[:, :batch_max_para_num, :batch_max_len] output_masks = output_masks[:, :batch_max_para_num + 2, :batch_max_para_num + 1] output_masks[:, 1:, -1] = 1.0 # Ignore EOE in the first step input_ids = input_ids.to(device) input_masks = input_masks.to(device) segment_ids = segment_ids.to(device) output_masks = output_masks.to(device) examples = [ eval_examples[eval_start_index + ex_indices[i].item()] for i in range(input_ids.size(0)) ] with torch.no_grad(): pred, prob, topk_pred, topk_prob = model.beam_search( input_ids, segment_ids, input_masks, examples=examples, tokenizer=tokenizer, retriever=tfidf_retriever, split_chunk=args.split_chunk) for i in range(len(pred)): e = examples[i] titles = [e.title_order[p] for p in pred[i]] # Output predictions to a file if args.pred_file is not None: pred_output.append({}) pred_output[-1]['q_id'] = e.guid pred_output[-1]['titles'] = titles pred_output[-1]['probs'] = [] for prob_ in prob[i]: entry = {'EOE': prob_[-1]} for j in range(len(e.title_order)): entry[e.title_order[j]] = prob_[j] pred_output[-1]['probs'].append(entry) topk_titles = [[e.title_order[p] for p in topk_pred[i][j]] for j in range(len(topk_pred[i]))] pred_output[-1]['topk_titles'] = topk_titles topk_probs = [] for k in range(len(topk_prob[i])): topk_probs.append([]) for prob_ in topk_prob[i][k]: entry = {'EOE': prob_[-1]} for j in range(len(e.title_order)): entry[e.title_order[j]] = prob_[j] topk_probs[-1].append(entry) pred_output[-1]['topk_probs'] = topk_probs # Output the selected paragraphs context = {} for ts in topk_titles: for t in ts: context[t] = e.all_paras[t] pred_output[-1]['context'] = context eval_start_index = eval_end_index + 1 del eval_features del all_input_ids del all_input_masks del all_segment_ids del all_output_masks del all_num_paragraphs del all_num_steps del all_ex_indices del eval_data if args.pred_file is not None: json.dump(pred_output, open(args.pred_file, 'w'))
def main(args): set_envs(args) print("Using: {}".format(args.device)) tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path, local_files_only=True) classifier = AutoQuestionAnswering.from_pretrained(model_path=args.pretrained_model_path, header_mode=args.header_mode, cls_index=tokenizer.cls_token_id) classifier.freeze_to_layer_by_name(args.freeze_layer_name) classifier.train() loss_fct = nn.CrossEntropyLoss(ignore_index=-100) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in classifier.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in classifier.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) # optimizer = optim.Adam(filter(lambda p: p.requires_grad, classifier.parameters()), # lr=args.learning_rate) # Initialization opt_level = 'O1' if args.cuda: classifier = classifier.to(args.device) if args.fp16: classifier, optimizer = amp.initialize(classifier, optimizer, opt_level=opt_level) amp.register_half_function(torch, "einsum") # classifier = nn.parallel.DistributedDataParallel(classifier, # device_ids=args.device_ids, # output_device=0, # find_unused_parameters=True) if args.reload_from_files: checkpoint = torch.load(args.model_state_file) classifier.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) amp.load_state_dict(checkpoint['amp']) train_state = make_train_state(args) dataset = HotpotQA_QA_Dataset.build_dataset(args.json_train_path) dataset.set_parameters(tokenizer = tokenizer, topN_sents = args.topN_sents, max_length=args.max_length, uncased=args.uncased, permutations=args.permutations, random_seed=args.seed) print(dataset) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='min', factor=0.7, patience=dataset.get_num_batches(args.batch_size)/50) # scheduler = get_linear_schedule_with_warmup( # optimizer, # num_warmup_steps=args.warmup_steps, # num_training_steps=dataset.get_num_batches(args.batch_size) * args.num_epochs # ) try: writer = SummaryWriter(log_dir=args.log_dir,flush_secs=args.flush_secs) epoch_bar = tqdm(desc='training routine', total=args.num_epochs, position=0) dataset.set_split('train') train_bar = tqdm(desc='split=train', total=dataset.get_num_batches(args.batch_size), position=1) dataset.set_split('val') val_bar = tqdm(desc='split=val', total=dataset.get_num_batches(args.batch_size), position=1) cursor_train = 0 cursor_val = 0 if args.reload_from_files and 'cursor_train' in checkpoint.keys(): cursor_train = checkpoint['cursor_train'] + 1 cursor_val = checkpoint['cursor_val'] + 1 for epoch_index in range(args.num_epochs): train_bar.n = 0 val_bar.n = 0 train_state['epoch_index'] = epoch_index dataset.set_split('train') dataset.random_seed = args.seed + epoch_index batch_generator = generate_QA_batches(dataset,shuffle=True, batch_size=args.batch_size, device=args.device) running_loss = 0.0 running_ans_span_accuracy = 0.0 running_yes_no_span_accuracy = 0.0 classifier.train() # dont count running value if denominator == 0. batch_index_for_yesnospan = 0 batch_index_for_span = 0 for batch_index, batch_dict in enumerate(batch_generator): optimizer.zero_grad() yes_no_span = batch_dict.pop('yes_no_span') res = classifier(**batch_dict) start_logits, end_logits, cls_logits = res[0], res[1], res[2] start_loss = loss_fct(start_logits, batch_dict['start_positions']) end_loss = loss_fct(end_logits, batch_dict['end_positions']) start_end_loss = (start_loss + end_loss) / 2 if start_end_loss > 1e5: print(start_logits.gather(-1, batch_dict['start_positions'].view(-1, 1))) print(batch_dict['special_tokens_mask'].gather(-1, batch_dict['start_positions'].view(-1, 1))) print(batch_dict['start_positions']) print('') print(end_logits.gather(-1, batch_dict['end_positions'].view(-1, 1))) print(batch_dict['special_tokens_mask'].gather(-1, batch_dict['end_positions'].view(-1, 1))) print(batch_dict['end_positions']) exit() yes_no_span_loss = loss_fct(cls_logits, yes_no_span) / 2 if yes_no_span_loss > 1e5: print(cls_logits) print(yes_no_span) exit() ans_span_accuracy = compute_span_accuracy(start_logits, batch_dict['start_positions'], end_logits, batch_dict['end_positions']) yes_no_span_accuracy = compute_accuracy(cls_logits, yes_no_span) loss = start_end_loss + yes_no_span_loss running_loss += (loss.item() - running_loss) / (batch_index + 1) if ans_span_accuracy: running_ans_span_accuracy += \ (ans_span_accuracy - running_ans_span_accuracy) / (batch_index_for_span + 1) batch_index_for_span += 1 if yes_no_span_accuracy: running_yes_no_span_accuracy += \ (yes_no_span_accuracy - running_yes_no_span_accuracy) / (batch_index_for_yesnospan + 1) batch_index_for_yesnospan += 1 if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() optimizer.step() scheduler.step(running_loss) # Update learning rate schedule # update bar train_bar.set_postfix(running_loss=running_loss,epoch=epoch_index) train_bar.update() writer.add_scalar('loss/train', loss.item(), cursor_train) if ans_span_accuracy: writer.add_scalar('ans_span_accuracy/train', ans_span_accuracy, cursor_train) if yes_no_span_accuracy: writer.add_scalar('yes_no_span_accuracy/train', yes_no_span_accuracy, cursor_train) writer.add_scalar('running_loss/train', running_loss, cursor_train) writer.add_scalar('running_ans_span_accuracy/train', running_ans_span_accuracy, cursor_train) writer.add_scalar('running_yes_no_span_accuracy/train', running_yes_no_span_accuracy, cursor_train) cursor_train += 1 train_state['train_running_loss'].append(running_loss) # Iterate over val dataset # setup: batch generator, set loss and acc to 0; set eval mode on dataset.set_split('val') batch_generator = generate_QA_batches(dataset, batch_size=args.batch_size, device=args.device) running_loss = 0.0 running_ans_span_accuracy = 0.0 running_yes_no_span_accuracy = 0.0 classifier.eval() batch_index_for_yesnospan = 0 batch_index_for_span = 0 for batch_index, batch_dict in enumerate(batch_generator): with torch.no_grad(): yes_no_span = batch_dict.pop('yes_no_span') res = classifier(**batch_dict) start_logits, end_logits, cls_logits = res[0], res[1], res[2] start_loss = loss_fct(start_logits, batch_dict['start_positions']) end_loss = loss_fct(end_logits, batch_dict['end_positions']) start_end_loss = (start_loss + end_loss) / 2 yes_no_span_loss = loss_fct(cls_logits, yes_no_span) / 2 ans_span_accuracy = compute_span_accuracy(start_logits, batch_dict['start_positions'], end_logits, batch_dict['end_positions']) yes_no_span_accuracy = compute_accuracy(cls_logits, yes_no_span) loss = start_end_loss + yes_no_span_loss running_loss += (loss.item() - running_loss) / (batch_index + 1) if ans_span_accuracy: running_ans_span_accuracy += \ (ans_span_accuracy - running_ans_span_accuracy) / (batch_index_for_span + 1) batch_index_for_span += 1 if yes_no_span_accuracy: running_yes_no_span_accuracy += \ (yes_no_span_accuracy - running_yes_no_span_accuracy) / (batch_index_for_yesnospan + 1) batch_index_for_yesnospan += 1 val_bar.set_postfix(running_loss=running_loss,epoch=epoch_index) val_bar.update() writer.add_scalar('loss/val', loss.item(), cursor_val) if ans_span_accuracy: writer.add_scalar('ans_span_accuracy/val', ans_span_accuracy, cursor_val) if yes_no_span_accuracy: writer.add_scalar('yes_no_span_accuracy/val', yes_no_span_accuracy, cursor_val) writer.add_scalar('running_loss/val', running_loss, cursor_val) writer.add_scalar('running_ans_span_accuracy/val', running_ans_span_accuracy, cursor_val) writer.add_scalar('running_yes_no_span_accuracy/val', running_yes_no_span_accuracy, cursor_val) cursor_val += 1 train_state['val_running_loss'].append(running_loss) if not args.use_mini: train_state = update_train_state(args=args, model=classifier, optimizer = optimizer, train_state=train_state) epoch_bar.update() if train_state['stop_early']: print('STOP EARLY!') break except KeyboardInterrupt: print("Exiting loop") if args.use_mini: rm_rf(args.log_dir) except : print_exc() print(f"err in epoch_index {epoch_index}, batch_index {batch_index}.")
def run(): args = get_args() fdir = Path(args.dir) tb = SummaryWriter(args.logdir) # 对啦,tensorboard画图的 device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") output_dir = Path(args.output) output_dir.mkdir(exist_ok=True, parents=True) logger.info(args) logger.info(f"loading vocab...") tokenizer = Tokenizer.from_pretrained(fdir / 'vocab.pkl') logger.info(f"loading dataset...") train_dataset = torch.load(fdir / 'train.pkl') test_dataset = torch.load(fdir / 'test.pkl') train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) test_loader = DataLoader(test_dataset, batch_size=args.batch_size) logger.info(f"initializing model...") model = init_model_by_key(args, tokenizer) model.to(device) loss_function = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_id) optimizer = optim.Adam(model.parameters(), lr=args.lr) if args.fp16: try: from apex import amp # 实现不同程度的混合精度加速,提升pytorch的训练速度 amp.register_half_function( torch, 'einsum' ) # 某些不常用的函数,在使用前需要注册;某些函数(如einsum)暂不支持FP16加速,建议不要用的太heavy model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min') # 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能。 logger.info(f"num gpu: {torch.cuda.device_count()}") global_step = 0 for epoch in range(args.epochs): logger.info(f"***** Epoch {epoch} *****") model.train() t1 = time.time() accu_loss = 0.0 for step, batch in enumerate(train_loader): optimizer.zero_grad() batch = tuple(t.to(device) for t in batch) input_ids, masks, lens, target_ids = batch logits = model(input_ids, masks) loss = loss_function(logits.view(-1, tokenizer.vocab_size), target_ids.view(-1)) if torch.cuda.device_count() > 1: loss = loss.mean() accu_loss += loss.item() if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() if step % 100 == 0: tb.add_scalar('loss', loss.item(), global_step) # tensorboard画图用的 logger.info( f"[epoch]: {epoch}, [batch]: {step}, [loss]: {loss.item()}" ) global_step += 1 scheduler.step(accu_loss) t2 = time.time() logger.info( f"epoch time: {t2-t1:.5}, accumulation loss: {accu_loss:.6}") if (epoch + 1) % args.test_epoch == 0: predict_demos(model, tokenizer) bleu, rl = auto_evaluate(model, test_loader, tokenizer) logger.info(f"BLEU: {round(bleu, 9)}, Rouge-L: {round(rl, 8)}") if (epoch + 1) % args.save_epoch == 0: filename = f"{model.__class__.__name__}_{epoch + 1}.bin" filename = output_dir / filename save_model(filename, model, args, tokenizer)
def __init__( self, access_mode, fp16, fp16_opt_level, model, model_name, device, myio, save_dir, n_best, max_answer_length, do_lower_case, verbose_logging, version_2_with_negative, null_score_diff_threshold, max_steps=1e5, log_int=1e4, best_int=500, verbose_int=1000, max_grad_norm=1.0, optimizer=None, weight_decay=0.0, lr=5e-3, eps=1e-8, warmup_steps=0, freeze_embeddings=False, ): """ Object to store learning. Used for fine-tuning. Data stored in myio.IO object called myio. """ self.debug = False self.fp16 = fp16 self.fp16_opt_level = fp16_opt_level self.access_mode = access_mode self.model = model.to(device) self.model_name = model_name self.device = device self.IO = myio self.save_dir = save_dir self.max_steps = max_steps self.log_int = log_int self.best_int = best_int self.verbose_int = verbose_int self.max_grad_norm = max_grad_norm self.weight_decay = weight_decay self.lr = lr self.eps = eps self.warmup_steps = warmup_steps self.freeze = freeze_embeddings # make directory for recorded weights if doesn't already exist self.log_dir = os.path.join(self.save_dir, 'logged') if not os.path.exists(self.log_dir): os.mkdir(self.log_dir) # for evaluation self.n_best = n_best self.max_answer_length = max_answer_length self.do_lower_case = do_lower_case self.verbose_logging = verbose_logging self.version_2_with_negative = version_2_with_negative self.null_score_diff_threshold = null_score_diff_threshold # data self.train_dataloader = None self.val_dataloader = None self.val_examples = None self.val_features = None # set optimizer self.optimizer = optimizer if optimizer is None: self.set_optimizer() # use mixed precision if needed if self.fp16: from apex import amp amp.register_half_function(torch, "einsum") self.model, self.optimizer = amp.initialize( self.model, self.optimizer, opt_level=self.fp16_opt_level) # if multiple GPUs on single device if torch.cuda.is_available() and torch.cuda.device_count() > 1: self.model = nn.DataParallel(model) self.model.to(self.device) # stop embedding weight grad tracking if self.freeze: if isinstance(self.model, nn.DataParallel): bert = self.model.module.model.bert else: bert = self.model.model.bert for param in bert.parameters(): param.requires_grad = False log.info("Froze BERT parameters") if self.debug: # to check updating if isinstance(self.model, nn.DataParallel): qabert = self.model.module.model else: qabert = self.model.model self.fixed_bert = copy.deepcopy(qabert.bert) self.fixed_qa = copy.deepcopy(qabert.qa_outputs)
def main(): vocab_path = f'{config.data_dir}/vocabs' args = get_args() tb = SummaryWriter(args.logdir) epochs = args.epochs batch_size = args.batch_size lr = args.lr embed_dim = config.embed_dim hidden_dim = config.hidden_dim output_dir = config.ouput_dir print("yes2") device = torch.device( "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") logger.info(f"***** Loading vocab *****") word_to_ix = load_vocab(vocab_path) vocab_size = len(word_to_ix) logger.info(f"***** Initializing dataset *****") train_dataloader = init_dataset(args.dir, batch_size) logger.info(f"***** Training *****") model = TraForEncoder(vocab_size, embed_dim, hidden_dim) optimizer = optim.Adam(model.parameters(), lr=lr) model.to(device) if args.fp16: try: from apex import amp amp.register_half_function(torch, 'einsum') model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex to use fp16 training." ) if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) model.train() loss_func = nn.CrossEntropyLoss(ignore_index=word_to_ix['[PAD]']) logger.info(f"Num GPU {torch.cuda.device_count()}") global_step = 0 for epoch in range(epochs): logger.info(f"***** Epoch {epoch} *****") for step, batch in enumerate(train_dataloader): optimizer.zero_grad() batch = tuple(t.to(device) for t in batch) seq_ids, exted_att_mask, tag_ids = batch logits = model(seq_ids, exted_att_mask) loss = loss_func(logits.view(-1, vocab_size), tag_ids.view(-1)) if torch.cuda.device_count() > 1: loss = loss.mean() if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() if step % 100 == 0: tb.add_scalar('loss', loss.item(), global_step) logger.info( f"[epoch]: {epoch}, [batch]: {step}, [loss]: {loss.item()}" ) global_step += 1 save_model(model, output_dir, epoch + 1)
def train(args, logger, tb_writer): logger.info('Args: {}'.format(json.dumps(vars(args), indent=4, sort_keys=True))) if args.local_rank in [-1, 0]: with open(os.path.join(args.save_dir, 'args.yaml'), 'w') as file: yaml.safe_dump(vars(args), file, sort_keys=False) device_id = args.local_rank if args.local_rank != -1 else 0 device = torch.device('cuda', device_id) logger.warning(f'Using GPU {args.local_rank}.') world_size = torch.distributed.get_world_size() if args.local_rank != -1 else 1 logger.info(f'Total number of GPUs used: {world_size}.') effective_batch_size = args.batch_size * world_size * args.accumulation_steps logger.info(f'Effective batch size: {effective_batch_size}.') num_train_samples_per_epoch, num_dev_samples, num_unique_train_epochs = get_data_sizes(data_dir=args.data_dir, num_epochs=args.num_epochs, logger=logger) num_optimization_steps = sum(num_train_samples_per_epoch) // world_size // args.batch_size // \ args.accumulation_steps if args.max_steps > 0: num_optimization_steps = min(num_optimization_steps, args.max_steps) logger.info(f'Total number of optimization steps: {num_optimization_steps}.') # Set random seed logger.info(f'Using random seed {args.seed}.') random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) # Get model if args.local_rank not in [-1, 0]: torch.distributed.barrier() logger.info(f'Loading model {args.model} for task {args.task}...') model = ModelRegistry.get_model(args.task).from_pretrained(args.model) if args.local_rank in [-1, 0]: with open(os.path.join(args.save_dir, 'config.json'), 'w') as file: json.dump(model.config.__dict__, file) if args.local_rank == 0: torch.distributed.barrier() model.to(device) # Get optimizer logger.info('Creating optimizer...') parameter_groups = get_parameter_groups(model) optimizer = AdamW(parameter_groups, lr=args.learning_rate, weight_decay=args.weight_decay, eps=1e-8) scheduler = get_lr_scheduler(optimizer, num_steps=num_optimization_steps, warmup_proportion=args.warmup_proportion) if args.amp: amp.register_half_function(torch, 'einsum') model, optimizer = amp.initialize(model, optimizer, opt_level=args.amp_opt_level) if args.local_rank != -1: model = DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # Get dev data loader dev_data_file = os.path.join(args.data_dir, f'dev.jsonl.gz') logger.info(f'Creating dev dataset from {dev_data_file}...') dev_dataset = DatasetRegistry.get_dataset(args.task)(data_file=dev_data_file, data_size=num_dev_samples, local_rank=-1) dev_loader = DataLoader(dev_dataset, batch_size=2 * args.batch_size, num_workers=1, collate_fn=dev_dataset.collate_fn) # Get evaluator evaluator = EvaluatorRegistry.get_evaluator(args.task)(data_loader=dev_loader, logger=logger, tb_writer=tb_writer, device=device, world_size=world_size, args=args) # Get saver saver = CheckpointSaver(save_dir=args.save_dir, max_checkpoints=args.max_checkpoints, primary_metric=evaluator.primary_metric, maximize_metric=evaluator.maximize_metric, logger=logger) global_step = 0 samples_processed = 0 # Train logger.info('Training...') samples_till_eval = args.eval_every for epoch in range(1, args.num_epochs + 1): # Get train data loader for current epoch train_data_file_num = ((epoch - 1) % num_unique_train_epochs) + 1 train_data_file = os.path.join(args.data_dir, f'epoch_{train_data_file_num}.jsonl.gz') logger.info(f'Creating training dataset from {train_data_file}...') train_dataset = DatasetRegistry.get_dataset(args.task)(train_data_file, data_size=num_train_samples_per_epoch[epoch - 1], local_rank=args.local_rank, world_size=world_size) train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=1, collate_fn=train_dataset.collate_fn) logger.info(f'Starting epoch {epoch}...') model.train() model.zero_grad() loss_values = defaultdict(float) samples_till_end = (num_optimization_steps - global_step) * effective_batch_size samples_in_cur_epoch = min([len(train_loader.dataset), samples_till_end]) disable_progress_bar = (args.local_rank not in [-1, 0]) with tqdm(total=samples_in_cur_epoch, disable=disable_progress_bar) as progress_bar: for step, batch in enumerate(train_loader, 1): batch = {name: tensor.to(device) for name, tensor in batch.items()} current_batch_size = batch['input_ids'].shape[0] outputs = model(**batch) loss, current_loss_values = outputs[:2] loss = loss / args.accumulation_steps for name, value in current_loss_values.items(): loss_values[name] += value / args.accumulation_steps if args.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() samples_processed += current_batch_size * world_size samples_till_eval -= current_batch_size * world_size progress_bar.update(current_batch_size * world_size) if step % args.accumulation_steps == 0: current_lr = scheduler.get_last_lr()[0] if args.amp: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.0) else: torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() scheduler.step() model.zero_grad() global_step += 1 # Log info progress_bar.set_postfix(epoch=epoch, step=global_step, lr=current_lr, **loss_values) if args.local_rank in [-1, 0]: tb_writer.add_scalar('train/LR', current_lr, global_step) for name, value in loss_values.items(): tb_writer.add_scalar(f'train/{name}', value, global_step) loss_values = {name: 0 for name in loss_values} if global_step == args.max_steps: logger.info('Reached maximum number of optimization steps.') break if samples_till_eval <= 0: samples_till_eval = args.eval_every eval_results = evaluator.evaluate(model, global_step) if args.local_rank in [-1, 0]: saver.save(model, global_step, eval_results) if not args.do_not_eval_after_epoch: eval_results = evaluator.evaluate(model, global_step) if args.local_rank in [-1, 0]: saver.save(model, global_step, eval_results)
def train_ts(args): def build_scheduler(optimizers, args): optimizer, optimizer_sparse = optimizers scheduler_sparse = None if args.scheduler == "cosine": # here we do not set eta_min to lr_min to be backward compatible # because in previous versions eta_min is default to 0 # rather than the default value of lr_min 1e-6 scheduler = optim.lr_scheduler.CosineAnnealingLR( optimizer, args.max_step, eta_min=args.eta_min) # should use eta_min arg elif args.scheduler == "inv_sqrt": # originally used for Transformer (in Attention is all you need) def lr_lambda(step): # return a multiplier instead of a learning rate if step == 0 and args.warmup_step == 0: return 1.0 else: return (1.0 / (step**0.5) if step > args.warmup_step else step / (args.warmup_step**1.5)) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) elif args.scheduler == "dev_perf": scheduler = optim.lr_scheduler.ReduceLROnPlateau( optimizer, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min, ) elif args.scheduler == "constant": pass else: raise ValueError(f"scheduler type {args.scheduler} not recognized") return scheduler, scheduler_sparse ############################################################################### # Training code ############################################################################### def evaluate(eval_iter, model): # Turn on evaluation mode which disables dropout. model.eval() # debug # If the model does not use memory at all, make the ext_len longer. # Otherwise, make the mem_len longer and keep the ext_len the same. # if default_args.mem_len == 0: # model.reset_length(default_args.eval_tgt_len, # default_args.ext_len + default_args.tgt_len - # default_args.eval_tgt_len, default_args.mem_len) # else: # model.reset_length(default_args.eval_tgt_len, # default_args.ext_len, default_args.mem_len + # default_args.tgt_len - default_args.eval_tgt_len) # Evaluation total_len, total_loss = 0, 0.0 with torch.no_grad(): mems = tuple() for i, (data, target, seq_len) in enumerate(eval_iter): if i >= args.max_eval_steps > 0: break ret = model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.mean() total_loss += seq_len * loss.float().item() total_len += seq_len # Switch back to the training mode # model.reset_length(default_args.tgt_len, default_args.ext_len, # default_args.mem_len) model.train() return total_loss / total_len # reverse distillation util def get_original_batches(model, tr_iter, integration_length): model.eval() if args.batch_chunk > 1: mems = [None for _ in range(args.batch_chunk)] first_logits = [[] for _ in range(args.batch_chunk)] else: mems = None first_logits = [] train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter with torch.no_grad(): for batch, (data, target, seq_len) in enumerate(train_iter): if batch == integration_length: break if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() logits, mems[i] = model._forward(data_i, mems=mems[i]) first_logits[i].append(logits.cpu()) else: logits, mems = model._forward(data, mems=mems) first_logits.append(logits.cpu()) return first_logits def build_optimizer(model, args, reload=False): optimizer_sparse = None if args.optim.lower() == "sgd": optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.mom) elif args.optim.lower() == "adam": optimizer = optim.Adam(model.parameters(), lr=args.lr) elif args.optim.lower() == "adagrad": optimizer = optim.Adagrad(model.parameters(), lr=args.lr) else: raise ValueError(f"optimizer type {args.optim} not recognized") if reload: if args.restart_from is not None: optim_name = f"optimizer_{args.restart_from}.pt" else: optim_name = "optimizer.pt" optim_file_name = os.path.join(args.restart_dir, optim_name) logging(f"reloading {optim_file_name}") if os.path.exists(os.path.join(args.restart_dir, optim_name)): with open(os.path.join(args.restart_dir, optim_name), "rb") as optim_file: opt_state_dict = torch.load(optim_file) try: optimizer.load_state_dict(opt_state_dict) # in case the optimizer param groups aren't the same shape, # merge them except: logging("merging optimizer param groups") opt_state_dict["param_groups"][0]["params"] = [ param for param_group in opt_state_dict["param_groups"] for param in param_group["params"] ] opt_state_dict["param_groups"] = [ opt_state_dict["param_groups"][0] ] optimizer.load_state_dict(opt_state_dict) else: logging("Optimizer was not saved. Start from scratch.") return optimizer, optimizer_sparse def log_val(val_loss, step, compute): logging("-" * 100) log_str = ("| Eval {:3d} at step {:>8d} | time: {:5.2f}s " "| valid loss {:5.2f}".format( step // args.eval_interval, step, (time.time() - eval_start_time), val_loss, )) log_str += " | bpc {:9.5f}".format(val_loss / math.log(2)) logging(log_str) logging("-" * 100) def epoch_loop( epoch, model, optimizers, schedulers, ): nonlocal train_step # Turn on training mode which enables dropout. if isinstance(model, nn.DataParallel): parent_model = model.module else: parent_model = model optimizer, optimizer_sparse = optimizers scheduler, scheduler_sparse = schedulers # global train_step, best_val_loss, eval_start_time, log_start_time train_losses = [] model.train() if args.batch_chunk > 1: mems = [tuple() for _ in range(args.batch_chunk)] else: mems = tuple() train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter log_start_time = time.time() best_val_loss = float("Infinity") for batch, (data, target, seq_len) in enumerate(train_iter): model.zero_grad() if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) target_chunks = torch.chunk(target, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.batch_chunk if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() train_losses.append(loss.float().item()) else: ret = model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() train_losses.append(loss.float().item()) if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.clip) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() parent_model.compute += openai_compute( non_emb_param_count(parent_model, nseries), data.numel(), 1) # step-wise learning rate annealing train_step += 1 parent_model.training_steps += 1 # check for yet-to-thaw parameters if getattr(parent_model, "freeze_countdown", 0) > 0: parent_model.freeze_countdown -= 1 # if this is the last step if parent_model.freeze_countdown == 0: for parameter in parent_model.parameters(): parameter.requires_grad = True logging("thawing all parameters") if args.scheduler in ["cosine", "constant", "dev_perf"]: # linear warmup stage if train_step < args.warmup_step: curr_lr = args.lr * train_step / args.warmup_step optimizer.param_groups = curr_lr else: if args.scheduler == "cosine": scheduler.step(train_step) elif args.scheduler == "inv_sqrt": scheduler.step(train_step) if train_step % args.log_interval == 0: cur_loss = np.mean(train_losses) elapsed = time.time() - log_start_time log_str = ("| epoch {:3d} step {:>8d} " "| {:>6d} batches " "| lr {:.3g} " "| ms/batch {:5.2f} " "| loss {:5.2f}".format( epoch, train_step, batch + 1, optimizer.param_groups[0]["lr"], elapsed * 1000 / args.log_interval, cur_loss, )) log_str += " | bpc {:9.5f}".format(cur_loss / math.log(2)) logging(log_str) train_losses = [] log_start_time = time.time() if train_step % args.eval_interval == 0: val_loss = evaluate(va_iter, model) log_val(val_loss, step=train_step, compute=parent_model.compute) # Save the model if the validation loss is the best we've seen so # far. if not best_val_loss or val_loss < best_val_loss: best_val_loss = val_loss if not args.debug: if args.fp16: with open( os.path.join(args.work_dir, "amp_checkpoint.pt"), "wb", ) as f: checkpoint = { "model": model.state_dict(), "optimizer": optimizer.state_dict(), "amp": amp.state_dict(), } torch.save(checkpoint, f) else: with open(os.path.join(args.work_dir, "model.pt"), "wb") as f: torch.save(parent_model, f) with open( os.path.join(args.work_dir, "optimizer.pt"), "wb", ) as f: torch.save(optimizer.state_dict(), f) # dev-performance based learning rate annealing if args.scheduler == "dev_perf": scheduler.step(val_loss) eval_start_time = time.time() if train_step == args.max_step: break def expand_model( strategy, integration, integration_length, n_add, model: MemTransformerLM, optimizers, schedulers, tr_iter, va_iter, epoch, step, ): optimizer, _ = optimizers scheduler, _ = schedulers if integration: if not integration_length or integration_length <= 0: warnings.warn( f"integration {integration} passed but integration_length is {integration_length}" ) else: logging( f"applying integration strategy {integration} with integration length {integration_length}" ) # pre-expansion validation logging(f"evaluating before expanding") val_loss = evaluate(va_iter, model) log_val(val_loss, step=step, compute=model.compute) # infer example logits for reverse distillation if "reverse_distil" in integration: first_logits = get_original_batches(model, tr_iter, integration_length) # expansion logging( f"adding {n_add} layers before starting epoch {epoch} with method {strategy}" ) new_layers = model.expand_layers(n_add, strategy=strategy, function=initialization_func) # optimizer update optimizer.add_param_group({ "params": new_layers.parameters(), "lr": optimizer.param_groups[0]["lr"], "initial_lr": optimizer.param_groups[0]["initial_lr"], }) scheduler.base_lrs.append(optimizer.param_groups[-1]["initial_lr"]) # training loop for reverse distillation if "reverse_distil" in integration: fit_to_previous_model(model, new_layers, tr_iter, first_logits, integration) # freezing parameters for frozen restart, we do this afterwards else the # new layers get copied also without grads if "freeze" in integration and integration_length > 0: for param_group in optimizer.param_groups[:-1]: for parameter in param_group["params"]: parameter.requires_grad = False model.freeze_countdown = integration_length # post-expansion validation logging(f"reevaluating") val_loss = evaluate(va_iter, model) log_val(val_loss, step=step, compute=model.compute) def expand_state(param, state): if param.shape != state.shape: ratios = [ param.shape[i] // state.shape[i] for i in range(len(param.shape)) ] return state.repeat(*ratios) else: return state def widen_model( strategy, ratio, model: MemTransformerLM, optimizers, va_iter, epoch, step, ): optimizer, _ = optimizers # pre-expansion validation logging(f"evaluating before widening") # debug val_loss = evaluate(va_iter, model) log_val(val_loss, compute=model.compute, step=step) # infer example logits for reverse distillation expansion logging( f"adding {ratio} layers before starting epoch {epoch} with method {strategy}" ) model.add_heads(ratio, strategy=strategy, function=initialization_func) # optimizer update for param, states in optimizer.state.items(): if isinstance(param, nn.Parameter): states["exp_avg"] = expand_state(param, states["exp_avg"]) states["exp_avg_sq"] = expand_state(param, states["exp_avg_sq"]) # training loop for reverse distillation # post-expansion validation logging(f"reevaluating") val_loss = evaluate(va_iter, model) log_val(val_loss, step=step, compute=model.compute) # reverse distillation trainer def fit_to_previous_model(model, new_layers, tr_iter, first_logits, integration): mse_loss = torch.nn.MSELoss() if "partial" in integration: distil_optimizer, distil_optimizer_sparse = build_optimizer( new_layers, reload=False) else: distil_optimizer, distil_optimizer_sparse = build_optimizer( model, reload=False) if args.cuda and args.fp16: model, distil_optimizer = amp.initialize(model, distil_optimizer, opt_level=args.fp16) model.train() if args.batch_chunk > 1: mems = [None for _ in range(args.batch_chunk)] else: mems = None train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter for batch, (data, _, _) in enumerate(train_iter): if batch == len(first_logits): break model.zero_grad() if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() logits, mems[i] = model._forward(data_i, mems=mems[i]) target_logits = first_logits[i][batch].to(logits.device) loss = mse_loss(logits, target_logits) / args.batch_chunk if args.fp16: with amp.scale_loss(loss, distil_optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() else: logits, mems = model._forward(data, mems=mems) target_logits = first_logits[batch].to(logits.device) loss = mse_loss(logits, target_logits) if args.fp16: with amp.scale_loss(loss, distil_optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if args.fp16: torch.nn.utils.clip_grad_norm_( amp.master_params(distil_optimizer), args.clip) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) distil_optimizer.step() ################################################################################### # # main() # args.tied = not args.not_tied if args.d_embed < 0: args.d_embed = args.d_model # Validate `--fp16` option if args.fp16: if not args.cuda: print("WARNING: --fp16 requires --cuda, ignoring --fp16 option") args.fp16 = False else: try: from apex import amp if args.fp16 == "O1": amp.register_half_function(torch, "einsum") except: print("WARNING: apex not installed, ignoring --fp16 option") args.fp16 = False device = torch.device("cuda" if args.cuda else "cpu") # Set the random seed manually for reproducibility. np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print( "WARNING: You have a CUDA device, so you should probably run " "with --cuda ") else: torch.cuda.manual_seed_all(args.seed) ############################################################################ # Logging ############################################################################ assert args.ext_len >= 0, "extended context length must be non-negative" assert args.d_batch % args.batch_chunk == 0 args.work_dir = "{}-{}".format(args.work_dir, args.dataset) args.work_dir = os.path.join(args.work_dir, time.strftime("%Y%m%d-%H%M%S")) logging = create_exp_dir( args.work_dir, scripts_to_save=["train_ts.py", "mem_transformer.py"], debug=args.debug, ) ############################################################################ # Load data ############################################################################ time_series = get_time_series(args.datadir, args.dataset) nseries = len(time_series.vocab) args.n_token = nseries eval_batch_size = 20 tr_iter = time_series.get_iterator( "train", args.d_batch, args.tgt_len, device=device, ext_len=args.ext_len, ) va_iter = time_series.get_iterator( "valid", eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len, ) te_iter = time_series.get_iterator( "test", eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len, ) cutoffs, tie_projs = [], [False] ############################################################################ # Define model ############################################################################ initialization_func = partial( weights_init, init=args.init, init_range=args.init_range, init_std=args.init_std, proj_init_std=args.proj_init_std, ) if args.restart and not args.fp16: if args.restart_from is not None: model_name = f"model_{args.restart_from}.pt" else: model_name = "model.pt" model_file_name = os.path.join(args.restart_dir, model_name) logging(f"reloading {model_file_name}") with open(model_file_name, "rb") as f: model = torch.load(f) # backwards compatibility with older saves if isinstance(model, nn.DataParallel): model = model.module model.backward_compatible(tie_weight=args.tied, tie_projs=tie_projs) if not args.fp16: model = model.float() model.apply(update_dropout) model.apply(update_dropatt) else: model = MemTransformerLM( nseries, args.n_layer, args.n_head, args.d_model, args.d_head, args.d_inner, args.dropout, args.dropatt, tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val, tie_projs=tie_projs, pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len, ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=cutoffs, same_length=args.same_length, clamp_len=args.clamp_len, ) model.apply(initialization_func) # debug # model.word_emb.apply(initialization_func) # ensure embedding init is not overridden by out_layer in case of # weight sharing args.n_all_param = sum([p.nelement() for p in model.parameters()]) args.n_nonemb_param = non_emb_param_count(model, nseries) logging("=" * 100) for k, v in args.__dict__.items(): logging(" - {} : {}".format(k, v)) logging("=" * 100) logging("#params = {}".format(args.n_all_param)) logging("#non emb params = {}".format(args.n_nonemb_param)) para_model = parallelize_model(model, args) optimizers = build_optimizer(para_model, args, reload=args.restart and not args.fp16) optimizer, optimizer_sparse = optimizers schedulers = build_scheduler(optimizers, args) scheduler, scheduler_sparse = schedulers if args.cuda and args.fp16: para_model, optimizer = amp.initialize(para_model, optimizer, opt_level=args.fp16) if args.restart: if args.restart_from is not None: checkpoint_name = f"amp_checkpoint_{args.restart_from}.pt" else: checkpoint_name = "amp_checkpoint.pt" with open(os.path.join(args.work_dir, checkpoint_name), "rb") as f: checkpoint = torch.load(f) model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) amp.load_state_dict(checkpoint["amp"]) ############################################################################ # Training loop ############################################################################ # Loop over epochs. if args.reset_lr: # then they're different and we use train_step only for the new lr # scheduling train_step = 0 optimizer.defaults["lr"] = args.lr for param_group in optimizer.param_groups: param_group["lr"] = args.lr param_group["initial_lr"] = args.lr scheduler.base_lrs = [args.lr] * len(scheduler.base_lrs) else: train_step = model.training_steps best_val_loss = None # Reload previous step number in case of default_args.restart if train_step > 0: logging(f"restarting from step {train_step}") log_start_time = time.time() eval_start_time = time.time() def run_training(): nonlocal train_step for epoch in itertools.count(start=first_epoch): # we check before the training loop; expanding at epoch 0 means # before training (for debug purposes) if args.expand and str(epoch - 1) in args.expansion_dict: n_add = int(args.expansion_dict[str(epoch - 1)]) expand_model( args.expand, args.integration, args.integration_length, n_add, model, optimizers, schedulers, tr_iter, va_iter, epoch, train_step, ) if args.widen and str(epoch - 1) in args.widen_dict: ratio = int(args.widen_dict[str(epoch - 1)]) widen_model( args.widen, ratio, model, optimizers, va_iter, epoch, train_step, ) epoch_loop(epoch, para_model, optimizers, schedulers) if train_step >= args.max_step: logging("-" * 100) logging("End of training") break if not args.debug and args.log_first_epochs: if epoch <= args.log_first_epochs: logging(f"saving model at the end of epoch {epoch}") if args.fp16: with open( os.path.join(args.work_dir, f"amp_checkpoint_{epoch}.pt"), "wb", ) as f: checkpoint = { "model": model.state_dict(), "optimizer": optimizer.state_dict(), "amp": amp.state_dict(), } torch.save(checkpoint, f) else: with open( os.path.join(args.work_dir, f"model_{epoch}.pt"), "wb", ) as f: torch.save(model, f) with open( os.path.join(args.work_dir, f"optimizer_{epoch}.pt"), "wb", ) as f: torch.save(optimizer.state_dict(), f) # At any point you can hit Ctrl + C to break out of training early. try: if args.restart_from: first_epoch = args.restart_from + 1 print(f"restarting from epoch {first_epoch}") else: first_epoch = 1 run_training() except KeyboardInterrupt: logging("-" * 100) logging("Exiting from training early") # Load the best model. if args.fp16: with open(os.path.join(args.work_dir, "amp_checkpoint.pt"), "rb") as f: checkpoint = torch.load(f) model.load_state_dict(checkpoint["model"]) optimizer.load_state_dict(checkpoint["optimizer"]) amp.load_state_dict(checkpoint["amp"]) else: with open(os.path.join(args.work_dir, "model.pt"), "rb") as f: model = torch.load(f) para_model = model.to(device) # Run on test data. test_loss = evaluate(te_iter, para_model) logging("=" * 100) logging("| End of training | test loss {:5.2f} | test bpc {:9.5f}".format( test_loss, test_loss / math.log(2))) logging("=" * 100)
return None, dw, db, None, None, None, None, None else: if (not ctx.needs_input_grad[1] and not ctx.needs_input_grad[0]): return None, None, None, None, None, None, None dx, dw = NHWC.cudnn_convolution_transpose_backward_nhwc(x, grad_y, w, ctx.padding, ctx.output_padding, ctx.stride, ctx.dilation, ctx.groups, torch.backends.cudnn.benchmark, torch.backends.cudnn.deterministic, list(ctx.needs_input_grad[0:2])) if (not ctx.needs_input_grad[1]): return None, None, None, None, None, None, None, None elif ctx.needs_input_grad[0]: return dx, dw, None, None, None, None, None, None else: return None, dw, None, None, None, None, None, None amp.register_half_function(conv2d_NHWC_impl,'apply') amp.register_half_function(conv2d_transpose_NHWC_impl,'apply') class Conv2d_NHWC(_ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _pair(kernel_size) stride = _pair(stride) padding = _pair(padding) dilation = _pair(dilation) super(Conv2d_NHWC, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _pair(0), groups, bias=bias, padding_mode='zeros') # permute filters self.weight = torch.nn.Parameter(self.weight.permute(0, 2, 3, 1).contiguous()) def forward(self, x):
from joeynmt.helpers import log_data_info, load_config, log_cfg, \ store_attention_plots, load_checkpoint, make_model_dir, \ make_logger, set_seed, symlink_update, latest_checkpoint_update, \ ConfigurationError from joeynmt.model import Model, _DataParallel from joeynmt.prediction import validate_on_data from joeynmt.loss import XentLoss from joeynmt.data import load_data, make_data_iter from joeynmt.builders import build_optimizer, build_scheduler, \ build_gradient_clipper from joeynmt.prediction import test # for fp16 training try: from apex import amp amp.register_half_function(torch, "einsum") except ImportError as no_apex: # error handling in TrainManager object construction pass logger = logging.getLogger(__name__) # pylint: disable=too-many-instance-attributes class TrainManager: """ Manages training loop, validations, learning rate scheduling and early stopping.""" def __init__(self, model: Model, config: dict, batch_class: Batch = Batch) -> None:
'same_length': False, 'clamp_len': -1, 'seed': 1111, 'max_step': 100, 'cuda': True, 'multi_gpu': False, 'gpu0_bsz': -1, 'debug': False, 'knockknock': True, 'tied': True }) device = torch.device('cuda' if default_args.cuda else 'cpu') if args.fp16 == "O1": amp.register_half_function(torch, 'einsum') cutoffs, tie_projs = [], [False] if default_args.adaptive: assert default_args.dataset in ['wt103', 'lm1b'] if default_args.dataset == 'wt103': cutoffs = [20000, 40000, 200000] tie_projs += [True] * len(cutoffs) elif default_args.dataset == 'lm1b': cutoffs = [60000, 100000, 640000] tie_projs += [False] * len(cutoffs) for n_layer, d_model, batch_size in product(args.n_layers, args.d_models, args.batch_sizes): n_layer, d_model, batch_size = int(n_layer), int(d_model), int(
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bert_model", default=None, type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, " "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, " "bert-base-multilingual-cased, bert-base-chinese.") parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model checkpoints and predictions will be written." ) # Optimizer parameters parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--adam_betas", default="(0.9, 0.999)", type=str) parser.add_argument("--no_bias_correction", default=False, action='store_true') # Other parameters parser.add_argument("--train_file", default=None, type=str, help="SQuAD-format json file for training.") parser.add_argument("--predict_file", default=None, type=str, help="SQuAD-format json file for evaluation.") parser.add_argument( "--max_seq_length", default=384, type=int, help= "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ) parser.add_argument( "--doc_stride", default=128, type=int, help= "When splitting up a long document into chunks, how much stride to take between chunks." ) parser.add_argument( "--max_query_length", default=64, type=int, help= "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_label", action='store_true') parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% " "of training.") parser.add_argument( "--n_best_size", default=20, type=int, help= "The total number of n-best predictions to generate in the nbest_predictions.json " "output file.") parser.add_argument( "--max_answer_length", default=30, type=int, help= "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another.") parser.add_argument( "--verbose_logging", action='store_true', help= "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation.") parser.add_argument("--no_cuda", action='store_true', help="Whether not to use CUDA when available") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument( "--do_lower_case", default=False, action='store_true', help= "Whether to lower case the input text. True for uncased models, False for cased models." ) parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( '--fp16', action='store_true', help="Whether to use 16-bit float precision instead of 32-bit") parser.add_argument('--fp16_opt_level', default='O1', type=str) parser.add_argument( '--loss_scale', type=float, default=0, help= "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") parser.add_argument( '--version_2_with_negative', action='store_true', help= 'If true, the SQuAD examples contain some that do not have an answer.') parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help= "If null_score - best_non_null is greater than the threshold predict null." ) parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.") parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.") parser.add_argument( '--no_masking', action='store_true', help='If true, we do not mask the span loss for no-answer examples.') parser.add_argument( '--skip_negatives', action='store_true', help= 'If true, we skip negative examples during training; this is mainly for ablation.' ) # For Natural Questions parser.add_argument( '--max_answer_len', type=int, default=1000000, help= "maximum length of answer tokens (might be set to 5 for Natural Questions!)" ) # balance the two losses. parser.add_argument( '--lambda_scale', type=float, default=1.0, help= "If you would like to change the two losses, please change the lambda scale." ) # Save checkpoints more parser.add_argument( '--save_gran', type=str, default="10,3", help='"10,5" means saving a checkpoint every 1/10 of the total updates,' 'but start saving from the 5th attempt') parser.add_argument('--oss_cache_dir', default=None, type=str) parser.add_argument('--cache_dir', default=None, type=str) parser.add_argument('--dist', default=False, action='store_true') args = parser.parse_args() print(args) if args.dist: dist.init_process_group(backend='nccl') print(f"local rank: {args.local_rank}") print(f"global rank: {dist.get_rank()}") print(f"world size: {dist.get_world_size()}") if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) n_gpu = 1 # Initializes the distributed backend which will take care of # synchronizing nodes/GPUs dist.init_process_group(backend='nccl') if args.dist: global_rank = dist.get_rank() world_size = dist.get_world_size() if world_size > 1: args.local_rank = global_rank logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) logger.info( "device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}". format(device, n_gpu, bool(args.local_rank != -1), args.fp16)) if args.gradient_accumulation_steps < 1: raise ValueError( "Invalid gradient_accumulation_steps parameter: {}, should be >= 1" .format(args.gradient_accumulation_steps)) args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if n_gpu > 0: torch.cuda.manual_seed_all(args.seed) if not args.do_train and not args.do_predict: raise ValueError( "At least one of `do_train` or `do_predict` must be True.") if args.do_train: if not args.train_file: raise ValueError( "If `do_train` is True, then `train_file` must be specified.") if args.do_predict: if not args.predict_file: raise ValueError( "If `do_predict` is True, then `predict_file` must be specified." ) if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train: raise ValueError( "Output directory () already exists and is not empty.") if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) # Prepare model and tokenizer tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case) model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.bert_model, num_labels=4, no_masking=args.no_masking, lambda_scale=args.lambda_scale) model.to(device) train_examples = None train_features = None num_train_optimization_steps = None if args.do_train: cached_train_features_file = args.train_file + '_{0}_{1}_{2}_{3}_{4}'.format( model.base_model_prefix, str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length), tokenizer.do_lower_case) cached_train_features_file_name = cached_train_features_file.split( '/')[-1] _oss_feature_save_path = os.path.join(oss_features_cache_dir, cached_train_features_file_name) try: if args.cache_dir is not None and os.path.exists( os.path.join(args.cache_dir, cached_train_features_file_name)): logger.info( f"Loading pre-processed features from {os.path.join(args.cache_dir, cached_train_features_file_name)}" ) train_features = torch.load( os.path.join(args.cache_dir, cached_train_features_file_name)) else: logger.info( f"Loading pre-processed features from oss: {_oss_feature_save_path}" ) train_features = torch.load( load_buffer_from_oss(_oss_feature_save_path)) except: train_examples = read_squad_examples( input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative, max_answer_len=args.max_answer_len, skip_negatives=args.skip_negatives) train_features = convert_examples_to_features_yes_no( examples=train_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=True) if args.local_rank in [-1, 0]: torch_save_to_oss(train_features, _oss_feature_save_path) logger.info( f"Saving train features into oss: {_oss_feature_save_path}" ) num_train_optimization_steps = int( len(train_features) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs if args.do_label: logger.info("finished.") return if args.do_train: # Prepare optimizer param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight', 'layer_norm'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] t_total = num_train_optimization_steps if args.local_rank != -1: t_total = t_total // dist.get_world_size() optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, betas=eval(args.adam_betas), eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, int(t_total * args.warmup_proportion), num_train_optimization_steps) if args.fp16: from apex import amp if args.fp16_opt_level == 'O1': amp.register_half_function(torch, "einsum") if args.loss_scale == 0: model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level) else: model, optimizer = amp.initialize( model, optimizer, opt_level=args.fp16_opt_level, loss_scale=args.loss_scale) if args.local_rank != -1: if args.fp16_opt_level == 'O2': try: import apex model = apex.parallel.DistributedDataParallel( model, delay_allreduce=True) except ImportError: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) else: model = torch.nn.parallel.DistributedDataParallel( model, find_unused_parameters=True) if n_gpu > 1: model = torch.nn.DataParallel(model) global_step = 0 logger.info("***** Running training *****") if train_examples: logger.info(" Num orig examples = %d", len(train_examples)) logger.info(" Num split examples = %d", len(train_features)) logger.info(" Instantaneous batch size per GPU = %d", args.train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (dist.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) all_start_positions = torch.tensor( [f.start_position for f in train_features], dtype=torch.long) all_end_positions = torch.tensor( [f.end_position for f in train_features], dtype=torch.long) all_switches = torch.tensor([f.switch for f in train_features], dtype=torch.long) train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_switches) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, pin_memory=True, num_workers=4) if args.save_gran is not None: save_chunk, save_start = args.save_gran.split(',') save_chunk = t_total // int(save_chunk) save_start = int(save_start) model.train() tr_loss = 0 for _epc in trange(int(args.num_train_epochs), desc="Epoch"): if args.local_rank != -1: train_dataloader.sampler.set_epoch(_epc) for step, batch in enumerate( tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])): if n_gpu == 1: # multi-gpu does scattering it-self batch = tuple(t.to(device) for t in batch) input_ids, input_mask, segment_ids, start_positions, end_positions, switches = batch loss = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, start_positions=start_positions, end_positions=end_positions, switch_list=switches) if n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() scheduler.step() optimizer.zero_grad() global_step += 1 if global_step % 50 == 0: logger.info(f"Training loss: {tr_loss / global_step}\t" f"Learning rate: {scheduler.get_lr()[0]}\t" f"Global step: {global_step}") if args.save_gran is not None and args.local_rank in [ -1, 0 ]: if (global_step % save_chunk == 0) and ( global_step // save_chunk >= save_start): logger.info('Saving a checkpoint....') output_dir_per_epoch = os.path.join( args.output_dir, str(global_step) + 'steps') os.makedirs(output_dir_per_epoch) # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module' ) else model # Only save the model it-self if args.oss_cache_dir is not None: _oss_model_save_path = os.path.join( args.oss_cache_dir, f"{global_step}steps") torch_save_to_oss( model_to_save.state_dict(), _oss_model_save_path + "/pytorch_model.bin") model_to_save.save_pretrained(output_dir_per_epoch) tokenizer.save_pretrained(output_dir_per_epoch) logger.info('Done') if args.do_train and (args.local_rank == -1 or dist.get_rank() == 0): # Save a trained model, configuration and tokenizer model_to_save = model.module if hasattr( model, 'module') else model # Only save the model it-self model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) torch_save_to_oss( model_to_save.state_dict(), os.path.join(args.oss_cache_dir, "pytorch_model.bin")) # Load a trained model and vocabulary that you have fine-tuned # model = IterBertForQuestionAnsweringConfidence.from_pretrained( # args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) if args.do_train is False and args.do_predict is True: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) elif args.do_train is True and args.do_predict is True: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.output_dir, num_labels=4, no_masking=args.no_masking) tokenizer = AutoTokenizer.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) else: model = IterBertForQuestionAnsweringConfidence.from_pretrained( args.bert_model, num_labels=4, no_masking=args.no_masking, lambda_scale=args.lambda_scale) model.to(device) if args.do_predict and (args.local_rank == -1 or dist.get_rank() == 0): eval_examples = read_squad_examples( input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative, max_answer_len=args.max_answer_length, skip_negatives=args.skip_negatives) eval_features = convert_examples_to_features_yes_no( examples=eval_examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=False) logger.info("***** Running predictions *****") logger.info(" Num orig examples = %d", len(eval_examples)) logger.info(" Num split examples = %d", len(eval_features)) logger.info(" Batch size = %d", args.predict_batch_size) all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) # Run prediction for full data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) model.eval() all_results = [] logger.info("Start evaluating") for input_ids, input_mask, segment_ids, example_indices in tqdm( eval_dataloader, desc="Evaluating", disable=args.local_rank not in [-1, 0]): if len(all_results) % 1000 == 0: logger.info("Processing example: %d" % (len(all_results))) input_ids = input_ids.to(device) input_mask = input_mask.to(device) segment_ids = segment_ids.to(device) with torch.no_grad(): batch_start_logits, batch_end_logits, batch_switch_logits = model( input_ids, segment_ids, input_mask) for i, example_index in enumerate(example_indices): start_logits = batch_start_logits[i].detach().cpu().tolist() end_logits = batch_end_logits[i].detach().cpu().tolist() switch_logits = batch_switch_logits[i].detach().cpu().tolist() eval_feature = eval_features[example_index.item()] unique_id = int(eval_feature.unique_id) all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits, switch_logits=switch_logits)) output_prediction_file = os.path.join(args.output_dir, "predictions.json") output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json") write_predictions_yes_no_no_empty_answer( eval_examples, eval_features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, args.no_masking)