def computeContactConfigGraphs():
    graphFileNameBase = resultsDir + "ConfigGraph"

    for j in range(numGraphs):
        configGraph = SparseGraph(GeneralVertexList(numVertices))
        degSequence = numpy.zeros(numVertices, numpy.int)
        lastDegSequence = numpy.zeros(numVertices, numpy.int)
        generator = ConfigModelGenerator(lastDegSequence)

        for i in dayList:
            logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
            subgraphIndices = numpy.nonzero(detections <= i)[0]
            subgraphIndices = numpy.unique(subgraphIndices)
            subgraph = sGraph.subgraph(subgraphIndices)

            subDegSequence = subgraph.degreeSequence()
            degSequence[subgraphIndices] = subDegSequence
            diffSequence = degSequence - lastDegSequence
            generator.setOutDegSequence(diffSequence)
            configGraph = generator.generate(configGraph, False)

            lastDegSequence = configGraph.degreeSequence()
            assert (degSequence>=lastDegSequence).all()
            assert subgraph.getNumEdges() >= configGraph.getNumEdges()

        configGraph.save(graphFileNameBase + str(j))
Esempio n. 2
0
    def __init__(self, minGraphSize=500, monthStep=1): 

        startYear = 1900
        daysInMonth = 30      
        
        #Start off with the HIV data 
        hivReader = HIVGraphReader()
        graph = hivReader.readHIVGraph()
        fInds = hivReader.getIndicatorFeatureIndices()
        
        #The set of edges indexed by zeros is the contact graph
        #The ones indexed by 1 is the infection graph
        edgeTypeIndex1 = 0
        edgeTypeIndex2 = 1
        sGraphContact = graph.getSparseGraph(edgeTypeIndex1)
        sGraphInfect = graph.getSparseGraph(edgeTypeIndex2)
        sGraphContact = sGraphContact.union(sGraphInfect)
        graph = sGraphContact
        
        #Find max component
        #Create a graph starting from the oldest point in the largest component 
        components = graph.findConnectedComponents()
        graph = graph.subgraph(list(components[0]))
        logging.debug(graph)
        
        detectionIndex = fInds["detectDate"]
        vertexArray = graph.getVertexList().getVertices()
        detections = vertexArray[:, detectionIndex]
        
        firstVertex = numpy.argmin(detections)
        
        dayList = list(range(int(numpy.min(detections)), int(numpy.max(detections)), daysInMonth*monthStep))
        dayList.append(numpy.max(detections))
        
        subgraphIndicesList = []
        
        #Generate subgraph indices list 
        for i in dayList:
            logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
            subgraphIndices = numpy.nonzero(detections <= i)[0]
            
            #Check subgraphIndices are sorted 
            subgraphIndices = numpy.sort(subgraphIndices)
            currentSubgraph = graph.subgraph(subgraphIndices)
            compIndices = currentSubgraph.depthFirstSearch(list(subgraphIndices).index(firstVertex))
            subgraphIndices =  subgraphIndices[compIndices]
            
            if subgraphIndices.shape[0] >= minGraphSize: 
                subgraphIndicesList.append(subgraphIndices)
        
        self.graph = graph
        self.subgraphIndicesList = subgraphIndicesList
        
        self.numGraphs = len(subgraphIndicesList)
def plotEdgeStats():
    logging.info("Computing vertex stats")

    femaleToHeteroMans = numpy.zeros(len(subgraphIndicesList))
    femaleToBis = numpy.zeros(len(subgraphIndicesList))
    heteroManToFemales = numpy.zeros(len(subgraphIndicesList))
    biToFemales = numpy.zeros(len(subgraphIndicesList))
    biToBis = numpy.zeros(len(subgraphIndicesList))
    
    print(len(subgraphIndicesList))
    print(len(dayList))

    for i in range(len(dayList)):
        logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
        subgraphIndices = subgraphIndicesList[i]
        subgraph = sGraph.subgraph(subgraphIndices)
        subVertexArray = subgraph.getVertexList().getVertices()
        edgeIndices = subgraph.getAllEdges()

        femaleToHeteroMans[i] = numpy.sum(numpy.logical_and(numpy.logical_and(subVertexArray[edgeIndices[:, 0], genderIndex]==1, subVertexArray[edgeIndices[:, 1], genderIndex]==0), subVertexArray[edgeIndices[:, 1], orientationIndex]==0))
        femaleToBis[i] = numpy.sum(numpy.logical_and(numpy.logical_and(subVertexArray[edgeIndices[:, 0], genderIndex]==1, subVertexArray[edgeIndices[:, 1], genderIndex]==0), subVertexArray[edgeIndices[:, 1], orientationIndex]==1))
        heteroManToFemales[i] = numpy.sum(numpy.logical_and(numpy.logical_and(subVertexArray[edgeIndices[:, 0], genderIndex]==0, subVertexArray[edgeIndices[:, 0], orientationIndex]==0), subVertexArray[edgeIndices[:, 1], genderIndex]==1))
        biToFemales[i] = numpy.sum(numpy.logical_and(numpy.logical_and(subVertexArray[edgeIndices[:, 0], genderIndex]==0, subVertexArray[edgeIndices[:, 0], orientationIndex]==1), subVertexArray[edgeIndices[:, 1], genderIndex]==1))
        biToBis[i] = numpy.sum(numpy.logical_and(subVertexArray[edgeIndices[:, 0], orientationIndex]==1, subVertexArray[edgeIndices[:, 1], orientationIndex]==1))

    global plotInd

    plt.figure(plotInd)
    plt.plot(absDayList, femaleToHeteroMans, plotStyles2[0], absDayList, femaleToBis, plotStyles2[1], absDayList, heteroManToFemales, plotStyles2[2], absDayList, biToFemales, plotStyles2[3], absDayList, biToBis, plotStyles2[4])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Frequency")
    plt.legend(("Woman to heterosexual man", "Woman to MSM", "Heterosexual man to woman", "MSM to woman", "MSM to MSM"), loc="upper left")
    plt.savefig(figureDir + "EgoAlterGenderOrient.eps")
    plotInd += 1

    for k in range(len(dayList)):
        day = dayList[k]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(biToFemales[k]))
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(biToBis[k]))
def plotOtherStats():

    binEdges = numpy.arange(0, 6000, 180)
    binEdges2 = numpy.arange(0, 10000, 365)
    diffDetections = numpy.zeros((len(subgraphIndicesList2), binEdges.shape[0]-1))
    diffDobs = numpy.zeros((len(subgraphIndicesList2), binEdges2.shape[0]-1))

    global plotInd

    for i in range(len(dayList2)):
        dateStr = (str(DateUtils.getDateStrFromDay(dayList2[i], startYear)))
        logging.info(dateStr)
        subgraph = sGraph.subgraph(subgraphIndicesList2[i])
        subVertexArray = subgraph.getVertexList().getVertices()
        edgeIndices = subgraph.getAllEdges()
        
        diffDetections[i, :], binEdges = numpy.histogram(numpy.abs(subVertexArray[edgeIndices[:, 0], detectionIndex] - subVertexArray[edgeIndices[:, 1], detectionIndex]), binEdges)
        diffDetections[i, :] = diffDetections[i, :]/numpy.sum(diffDetections[i, :])

        diffDobs[i, :], binEdges2 = numpy.histogram(numpy.abs(subVertexArray[edgeIndices[:, 0], dobIndex] - subVertexArray[edgeIndices[:, 1], dobIndex]), binEdges2)
        diffDobs[i, :] = diffDobs[i, :]/numpy.sum(diffDobs[i, :])


        plotInd2 = plotInd 

        plt.figure(plotInd2)
        plt.plot((binEdges[1:]+binEdges[0:-1])/2.0, diffDetections[i, :], label=dateStr)
        plt.xlabel("Difference in detection date")
        plt.ylabel("Probability")
        #plt.ylim((0, 0.8))
        plt.legend()
        plt.savefig(figureDir + "DetectionDatesDist" +  ".eps")
        plotInd2 += 1

        plt.figure(plotInd2)
        plt.plot((binEdges2[1:]+binEdges2[0:-1])/2.0, diffDobs[i, :], label=dateStr)
        plt.xlabel("Difference in DoB")
        plt.ylabel("Probability")
        #plt.ylim((0, 0.8))
        plt.legend()
        plt.savefig(figureDir + "BirthDatesDist" +  ".eps")
        plotInd2 += 1
def computeInfectConfigGraphs():
    #We need the directed infection graph 
    hivReader = HIVGraphReader()
    graph = hivReader.readHIVGraph(False)
    sGraphInfect = graph.getSparseGraph(edgeTypeIndex2)
    sGraph = sGraphInfect

    graphFileNameBase = resultsDir + "ConfigInfectGraph"

    for j in range(numGraphs):
        configGraph = SparseGraph(GeneralVertexList(numVertices), False)
        
        outDegSequence = numpy.zeros(numVertices, numpy.int)
        inDegSequence = numpy.zeros(numVertices, numpy.int)
        lastOutDegSequence = numpy.zeros(numVertices, numpy.int)
        lastInDegSequence = numpy.zeros(numVertices, numpy.int)
        generator = ConfigModelGenerator(lastOutDegSequence, lastInDegSequence)

        for i in dayList:
            logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
            subgraphIndices = numpy.nonzero(detections <= i)[0]
            subgraphIndices = numpy.unique(subgraphIndices)
            subgraph = sGraph.subgraph(subgraphIndices)

            outDegSequence[subgraphIndices] = subgraph.outDegreeSequence()
            inDegSequence[subgraphIndices] = subgraph.inDegreeSequence()
            outDiffSequence = outDegSequence - lastOutDegSequence
            inDiffSequence = inDegSequence - lastInDegSequence

            generator.setInDegSequence(inDiffSequence)
            generator.setOutDegSequence(outDiffSequence)
            configGraph = generator.generate(configGraph, False)

            lastOutDegSequence = configGraph.outDegreeSequence()
            lastInDegSequence = configGraph.inDegreeSequence()

            assert (outDegSequence>=lastOutDegSequence).all()
            assert (inDegSequence>=lastInDegSequence).all()

        configGraph.save(graphFileNameBase + str(j))
Esempio n. 6
0
def updateGraph(event):
    if updateGraph.i >= endDay:
        return False

    day = updateGraph.i
    graphNodeIndices = numpy.nonzero(sGraph.getVertexList().getVertices(nodeList)[:, detectionIndex] <= day)[0]
    #graphNodeIndices = numpy.nonzero(sGraph.getVertexList().getVertices(graphNodeIndices)[:, deathIndex] >= day)[0]

    tempNodeList = numpy.array(nodeList)[graphNodeIndices].tolist()
    tempGraph = networkx.subgraph(nxGraph, tempNodeList)
    tempNodeColour = [float(sGraph.getVertex(v)[dobIndex]) for v in tempNodeList]
    tempNodeSize = [float(tempGraph.degree(v)*nodeScale) for v in tempNodeList]

    if len(tempNodeList) != 0:
        matplotlib.pyplot.clf()
        networkx.draw_networkx(tempGraph, pos=nodePositions, node_size=tempNodeSize, node_color=tempNodeColour, nodelist=tempNodeList, vmin=vmin, vmax=vmax, alpha=alpha, labels=None, with_labels=False)
        matplotlib.pyplot.suptitle(str("Date: ") + DateUtils.getDateStrFromDay(updateGraph.i, 1900))
        #matplotlib.pyplot.axis([0, 1, 0, 1])
        matplotlib.pyplot.colorbar()
    #matplotlib.pyplot.axis([-500, 2000, -500, 2000])

    fig.canvas.draw()
    updateGraph.i = updateGraph.i + monthLength
Esempio n. 7
0
clusterer = IterativeSpectralClustering(k1, k2)
clusterer.nb_iter_kmeans = 20

logging.info("Running exact method")
iterator = IncreasingSubgraphListIterator(graph, subgraphIndicesList)
clusterListExact, timeListExact, boundList = clusterer.clusterFromIterator(iterator, False, verbose=True)

clusters = clusterListExact[0]

subgraphIndicesList = []
#minGraphSize = 100
minGraphSize = 500

#Generate subgraph indices list
for i in dayList:
    logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
    subgraphIndices = numpy.nonzero(detections <= i)[0]
    if subgraphIndices.shape[0] >= minGraphSize:
        subgraphIndicesList.append(subgraphIndices)

numGraphs = len(subgraphIndicesList)
modularities = numpy.zeros(numGraphs)
kwayNormalisedCuts = numpy.zeros(numGraphs)

#Need to fix this to use the right 
fullW = graph.getWeightMatrix()
#i = 0
for i in range(len(subgraphIndicesList)):
    W = fullW[subgraphIndicesList[i], :][:, subgraphIndicesList[i]]

    modularities[i] = GraphUtils.modularity(W, clusters[subgraphIndicesList[i]])
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "InfectGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2, True)
        Util.savePickle(statsDictList, resultsFileName, True)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        treeSizesDistArray = numpy.zeros((len(dayList2), 3000))
        treeDepthsDistArray = numpy.zeros((len(dayList2), 100))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))

            maxEigVector = statsDict["maxEigVector"]
            maxEigVector = numpy.flipud(numpy.sort(numpy.abs(maxEigVector)))
            maxEigVector = numpy.log(maxEigVector[maxEigVector>0])

            treeSizesDist = statsDict["treeSizesDist"]
            treeSizesDist = numpy.array(treeSizesDist, numpy.float64)/numpy.sum(treeSizesDist)
            treeSizesDistArray[j, 0:treeSizesDist.shape[0]] = treeSizesDist

            treeDepthsDist = statsDict["treeDepthsDist"]
            #treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)/numpy.sum(treeDepthsDist)
            treeDepthsDist = numpy.array(treeDepthsDist, numpy.float64)
            treeDepthsDistArray[j, 0:treeDepthsDist.shape[0]] = treeDepthsDist

            plotInd2 = plotInd

            plt.figure(plotInd2)
            plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            plt.ylim((0, 0.8))
            plt.legend()
            plt.savefig(figureDir + "DegreeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeSizesDist.shape[0])[treeSizesDist!=0], numpy.log(treeSizesDist[treeSizesDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Size")
            plt.ylabel("log(probability)")
            plt.xlim((0, 125))
            plt.legend()
            plt.savefig(figureDir + "TreeSizeDist" +  ".eps")
            plotInd2 += 1

            plt.figure(plotInd2)
            plt.scatter(numpy.arange(treeDepthsDist.shape[0])[treeDepthsDist!=0], numpy.log(treeDepthsDist[treeDepthsDist!=0]), s=30, c=plotStyles2[j][0], label=dateStr)
            plt.xlabel("Depth")
            plt.ylabel("log(probability)")
            plt.xlim((0, 15))
            plt.legend()
            plt.savefig(figureDir + "TreeDepthDist" +  ".eps")
            plotInd2 += 1

        dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]
        precision = 4 

        treeSizesDistArray = treeSizesDistArray[:, 0:treeSizesDist.shape[0]]
        nonZeroCols = numpy.sum(treeSizesDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeSizesDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeSizesDistArray[:, nonZeroCols])))

        print("Tree depths")
        treeDepthsDistArray = treeDepthsDistArray[:, 0:treeDepthsDist.shape[0]]
        nonZeroCols = numpy.sum(treeDepthsDistArray, 0)!=0
        print((Latex.array1DToRow(numpy.arange(treeDepthsDistArray.shape[1])[nonZeroCols])))
        print((Latex.array2DToRows(treeDepthsDistArray[:, nonZeroCols])))

        print(numpy.sum(treeDepthsDistArray[:, 0:3], 1))

        print("Edges and verticies")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(numVerticesEdgesArray.T, precision))
def plotScalarStats():
    logging.info("Computing scalar stats")
    resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl"


    if saveResults:
        statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, treeStats=True)
        Util.savePickle(statsArray, resultsFileName, True)
    else:
        statsArray = Util.loadPickle(resultsFileName)

        global plotInd

        #Output all the results into plots
        #Take the mean of the results over the configuration model graphs
        resultsFileNameBase = resultsDir + "ConfigInfectGraphScalarStats"
        numGraphs = len(subgraphIndicesList)
        configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)

        configStatsArray = numpy.mean(configStatsArrays, 2)
        configStatsStd = numpy.std(configStatsArrays, 2)

        #Make sure we don't include 0 in the array
        vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0)
        edgeIndex = numpy.argmax(statsArray[:, graphStats.numEdgesIndex] > 0)
        minIndex = numpy.maximum(vertexIndex, edgeIndex)

        def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
            plt.hold(True)
            plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
            #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
            errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
            plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
            plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=0, label="_nolegend_", ecolor=styleConfig[0])

            xmin, xmax = plt.xlim()
            plt.xlim((0, xmax))
            ymin, ymax = plt.ylim()
            plt.ylim((0, ymax))

        plt.figure(plotInd)
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]))
        plt.xlabel("log(|V|)")
        plt.ylabel("log(|E|)")
        plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        #plt.plot(absDayList, statsArray[:, graphStats.numTreesIndex], plotStyles3[0], label="Trees Size >= 1")
        #plt.plot(absDayList, statsArray[:, graphStats.numNonSingletonTreesIndex], plotStyles3[1], label="Trees Size >= 2")
        plotRealConfigError(graphStats.numTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 1", "CM trees size >= 1")
        plotRealConfigError(graphStats.numNonSingletonTreesIndex, plotStyles3[0], plotStyles5[0], "Trees size >= 2", "CM trees size >= 2")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. trees")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "NumTreesGrowth.eps")
        plotInd += 1

        for k in range(len(dayList)):
            day = dayList[k]
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.numTreesIndex]))
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numTreesIndex]))


        #Load stats from a file to get the max tree from its root 
        resultsFilename = resultsDir + "treeSizesDepths.npz"
        file = open(resultsFilename, 'r')
        arrayDict = numpy.load(file)
        statsArray[:, graphStats.maxTreeDepthIndex] = arrayDict["arr_0"]
        statsArray[:, graphStats.maxTreeSizeIndex] = arrayDict["arr_1"]
        statsArray[:, graphStats.secondTreeDepthIndex] = arrayDict["arr_2"]
        statsArray[:, graphStats.secondTreeSizeIndex] = arrayDict["arr_3"]

        plt.figure(plotInd)
        plotRealConfigError(graphStats.maxTreeSizeIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
        plotRealConfigError(graphStats.secondTreeSizeIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Size")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "MaxTreeGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.maxTreeDepthIndex, plotStyles3[0], plotStyles5[0], "Max tree", "CM max tree")
        plotRealConfigError(graphStats.secondTreeDepthIndex, plotStyles3[1], plotStyles5[1], "2nd tree", "CM 2nd tree")
        #plt.plot(absDayList, statsArray[:, graphStats.maxTreeDepthIndex], plotStyles3[0], absDayList, statsArray[:, graphStats.secondTreeDepthIndex], plotStyles3[1] )
        #plt.plot(absDayList, configStatsArray[:, graphStats.maxTreeDepthIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.secondTreeDepthIndex], plotStyles4[1])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Depth")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxTreeDepthGrowth.eps")
        
        plotInd += 1
def plotTreeStats():
    logging.info("Computing tree stats")
    resultsFileName = resultsDir + "InfectGrowthTreeStats.pkl"

    if saveResults:
        statsDictList = []

        for j in range(len(subgraphIndicesList2)):
            Util.printIteration(j, 1, len(subgraphIndicesList2))
            subgraphIndices = subgraphIndicesList2[j]
            subgraph = sGraph.subgraph(subgraphIndices)
            logging.info("Finding trees")
            trees = subgraph.findTrees()
            logging.info("Computing tree statistics")
            statsDict = {}

            locationEntropy = []
            orientEntropy = []
            detectionRanges = []

            for i in range(len(trees)):
                if len(trees[i]) > 1:
                    treeGraph = subgraph.subgraph(trees[i])
                    vertexArray = treeGraph.getVertexList().getVertices(list(range(treeGraph.getNumVertices())))
                    
                    locationEntropy.append(Util.entropy(vertexArray[:, locationIndex]))
                    orientEntropy.append(Util.entropy(vertexArray[:, orientationIndex]))
                    
                    detections = vertexArray[:, detectionIndex]
                    detectionRanges.append(numpy.max(detections) - numpy.min(detections))

            statsDict["locationEnt"] = numpy.array(locationEntropy)
            statsDict["orientEnt"] = numpy.array(orientEntropy)
            statsDict["detectRanges"] = numpy.array(detectionRanges)
            statsDictList.append(statsDict)

        Util.savePickle(statsDictList, resultsFileName, True)
    else:
        statsDictList = Util.loadPickle(resultsFileName)
        
        locBins = numpy.arange(0, 2.4, 0.2)
        detectBins = numpy.arange(0, 6500, 500)
        locationEntDists = []
        orientEntDists = []
        detectionDists = [] 

        for j in range(0, len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]
            plotInd2 = plotInd

            locationEntDists.append(statsDict["locationEnt"])
            orientEntDists.append(statsDict["orientEnt"])
            detectionDists.append(statsDict["detectRanges"])

        #for j in range(len(orientEntDists)):
        #    print(numpy.sum(numpy.histogram(orientEntDists[j])[0]))
        #    print(numpy.histogram(orientEntDists[j])[0]/float(orientEntDists[j].shape[0]))

        dateStrs = [DateUtils.getDateStrFromDay(dayList2[i], startYear) for i in range(1, len(dayList2))]

        plt.figure(plotInd2)
        histOut = plt.hist(locationEntDists, locBins, normed=True)
        plt.xlabel("Location Entropy")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "LocationEnt" +  ".eps")
        #plt.legend()
        plotInd2 += 1

        plt.figure(plotInd2)
        histOut = plt.hist(orientEntDists, normed=True)
        plt.xlabel("Orientation Entropy")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "OrientEnt" +  ".eps")
        #plt.legend()
        plotInd2 += 1

        plt.figure(plotInd2)
        histOut = plt.hist(detectionDists, detectBins, normed=True)
        plt.xlabel("Detection Range (days)")
        plt.ylabel("Probability Density")
        plt.savefig(figureDir + "DetectionRanges" +  ".eps")
        #plt.legend()
        plotInd2 += 1
#This is a set of days to record simple statistics 
monthStep = 3
dayList = list(range(int(numpy.min(detections)), int(numpy.max(detections)), daysInMonth*monthStep))
dayList.append(numpy.max(detections))

absDayList = [float(i-numpy.min(detections)) for i in dayList]
subgraphIndicesList = []

#Locations and labels for years
locs = list(range(0, int(absDayList[-1]), daysInYear*2))
labels = numpy.arange(1986, 2006, 2)

#This is a set of days to record more complex vectorial statistics
monthStep2 = 60
dayList2 = [DateUtils.getDayDelta(date(1989, 12, 31), startYear)]
dayList2.append(DateUtils.getDayDelta(date(1993, 12, 31), startYear))
dayList2.append(DateUtils.getDayDelta(date(1997, 12, 31), startYear))
dayList2.append(DateUtils.getDayDelta(date(2001, 12, 31), startYear))
dayList2.append(int(numpy.max(detections)))
subgraphIndicesList2 = []

logging.info(dayList2)

for i in dayList2:
    logging.info("Date: " + str(DateUtils.getDateStrFromDay(i, startYear)))
    subgraphIndices = numpy.nonzero(detections <= i)[0]
    subgraphIndicesList2.append(subgraphIndices)

logging.info(dayList)
plotInd = 1
def plotVectorStats():
    #Finally, compute some vector stats at various points in the graph
    logging.info("Computing vector stats")
    global plotInd
    resultsFileName = resultsDir + "ContactGrowthVectorStats.pkl"

    if saveResults:
        statsDictList = graphStats.sequenceVectorStats(sGraph, subgraphIndicesList2)
        Util.savePickle(statsDictList, resultsFileName, False)
    else:
        statsDictList = Util.loadPickle(resultsFileName)

        #Load up configuration model results
        configStatsDictList = []
        resultsFileNameBase = resultsDir + "ConfigGraphVectorStats"

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsDictList.append(Util.loadPickle(resultsFileName))

        #Now need to take mean of 1st element of list
        meanConfigStatsDictList = configStatsDictList[0]
        for i in range(len(configStatsDictList[0])):
            for k in range(1, numConfigGraphs):
                for key in configStatsDictList[k][i].keys():
                    if configStatsDictList[k][i][key].shape[0] > meanConfigStatsDictList[i][key].shape[0]:
                        meanConfigStatsDictList[i][key] = numpy.r_[meanConfigStatsDictList[i][key], numpy.zeros(configStatsDictList[k][i][key].shape[0] - meanConfigStatsDictList[i][key].shape[0])]
                    elif configStatsDictList[k][i][key].shape[0] < meanConfigStatsDictList[i][key].shape[0]:
                        configStatsDictList[k][i][key] = numpy.r_[configStatsDictList[k][i][key], numpy.zeros(meanConfigStatsDictList[i][key].shape[0] - configStatsDictList[k][i][key].shape[0])]

                    meanConfigStatsDictList[i][key] += configStatsDictList[k][i][key]

            for key in configStatsDictList[0][i].keys():
                meanConfigStatsDictList[i][key] = meanConfigStatsDictList[i][key]/numConfigGraphs


        triangleDistArray = numpy.zeros((len(dayList2), 100))
        configTriangleDistArray = numpy.zeros((len(dayList2), 100))
        hopPlotArray = numpy.zeros((len(dayList2), 27))
        configHopPlotArray = numpy.zeros((len(dayList2), 30))
        componentsDistArray = numpy.zeros((len(dayList2), 3000))
        configComponentsDistArray = numpy.zeros((len(dayList2), 3000))
        numVerticesEdgesArray = numpy.zeros((len(dayList2), 2), numpy.int)
        numVerticesEdgesArray[:, 0] = [len(sgl) for sgl in subgraphIndicesList2]
        numVerticesEdgesArray[:, 1] = [sGraph.subgraph(sgl).getNumEdges() for sgl in subgraphIndicesList2]

        binWidths = numpy.arange(0, 0.50, 0.05)
        eigVectorDists = numpy.zeros((len(dayList2), binWidths.shape[0]-1), numpy.int)

        femaleSums = numpy.zeros(len(dayList2))
        maleSums = numpy.zeros(len(dayList2))
        heteroSums = numpy.zeros(len(dayList2))
        biSums = numpy.zeros(len(dayList2))

        contactSums = numpy.zeros(len(dayList2))
        nonContactSums = numpy.zeros(len(dayList2))
        donorSums = numpy.zeros(len(dayList2))
        randomTestSums = numpy.zeros(len(dayList2))
        stdSums = numpy.zeros(len(dayList2))
        prisonerSums = numpy.zeros(len(dayList2))
        recommendSums = numpy.zeros(len(dayList2))
        
        meanAges = numpy.zeros(len(dayList2))
        degrees = numpy.zeros((len(dayList2), 20))

        provinces = numpy.zeros((len(dayList2), 15))

        havanaSums = numpy.zeros(len(dayList2))
        villaClaraSums = numpy.zeros(len(dayList2))
        pinarSums = numpy.zeros(len(dayList2))
        holguinSums = numpy.zeros(len(dayList2))
        habanaSums = numpy.zeros(len(dayList2))
        sanctiSums = numpy.zeros(len(dayList2))

        meanDegrees = numpy.zeros(len(dayList2))
        stdDegrees = numpy.zeros(len(dayList2))

        #Note that death has a lot of missing values
        for j in range(len(dayList2)):
            dateStr = (str(DateUtils.getDateStrFromDay(dayList2[j], startYear)))
            logging.info(dateStr)
            statsDict = statsDictList[j]
            configStatsDict = meanConfigStatsDictList[j]

            degreeDist = statsDict["outDegreeDist"]
            degreeDist = degreeDist/float(numpy.sum(degreeDist))
            #Note that degree distribution for configuration graph will be identical 

            eigenDist = statsDict["eigenDist"]
            eigenDist = numpy.log(eigenDist[eigenDist>=10**-1])
            #configEigenDist = configStatsDict["eigenDist"]
            #configEigenDist = numpy.log(configEigenDist[configEigenDist>=10**-1])

            hopCount = statsDict["hopCount"]
            hopCount = numpy.log10(hopCount)
            hopPlotArray[j, 0:hopCount.shape[0]] = hopCount
            configHopCount = configStatsDict["hopCount"]
            configHopCount = numpy.log10(configHopCount)
            #configHopPlotArray[j, 0:configHopCount.shape[0]] = configHopCount

            triangleDist = statsDict["triangleDist"]
            #triangleDist = numpy.array(triangleDist, numpy.float64)/numpy.sum(triangleDist)
            triangleDist = numpy.array(triangleDist, numpy.float64)
            triangleDistArray[j, 0:triangleDist.shape[0]] = triangleDist
            configTriangleDist = configStatsDict["triangleDist"]
            configTriangleDist = numpy.array(configTriangleDist, numpy.float64)/numpy.sum(configTriangleDist)
            configTriangleDistArray[j, 0:configTriangleDist.shape[0]] = configTriangleDist

            maxEigVector = statsDict["maxEigVector"]
            eigenvectorInds = numpy.flipud(numpy.argsort(numpy.abs(maxEigVector)))
            top10eigenvectorInds = eigenvectorInds[0:numpy.round(eigenvectorInds.shape[0]/10.0)]
            maxEigVector = numpy.abs(maxEigVector[eigenvectorInds])
            #print(maxEigVector)
            eigVectorDists[j, :] = numpy.histogram(maxEigVector, binWidths)[0]

            componentsDist = statsDict["componentsDist"]
            componentsDist = numpy.array(componentsDist, numpy.float64)/numpy.sum(componentsDist)
            componentsDistArray[j, 0:componentsDist.shape[0]] = componentsDist
            configComponentsDist = configStatsDict["componentsDist"]
            configComponentsDist = numpy.array(configComponentsDist, numpy.float64)/numpy.sum(configComponentsDist)
            configComponentsDistArray[j, 0:configComponentsDist.shape[0]] = configComponentsDist

            plotInd2 = plotInd

            plt.figure(plotInd2)
            plt.plot(numpy.arange(degreeDist.shape[0]), degreeDist, plotStyles2[j], label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            plt.ylim((0, 0.5))
            plt.savefig(figureDir + "DegreeDist" +  ".eps")
            plt.legend()
            plotInd2 += 1

            """
            plt.figure(plotInd2)
            plt.plot(numpy.arange(eigenDist.shape[0]), eigenDist, label=dateStr)
            plt.xlabel("Eigenvalue rank")
            plt.ylabel("log(Eigenvalue)")
            plt.savefig(figureDir + "EigenDist" +  ".eps")
            plt.legend()
            plotInd2 += 1
            """

            #How does kleinberg do the hop plots 
            plt.figure(plotInd2)
            plt.plot(numpy.arange(hopCount.shape[0]), hopCount, plotStyles[j], label=dateStr)
            plt.xlabel("k")
            plt.ylabel("log10(pairs)")
            plt.ylim( (2.5, 7) )
            plt.legend(loc="lower right")
            plt.savefig(figureDir + "HopCount" + ".eps")
            plotInd2 += 1
            
            plt.figure(plotInd2)
            plt.plot(numpy.arange(maxEigVector.shape[0]), maxEigVector, plotStyles2[j], label=dateStr)
            plt.xlabel("Rank")
            plt.ylabel("log(eigenvector coefficient)")
            plt.savefig(figureDir + "MaxEigVector" +  ".eps")
            plt.legend()
            plotInd2 += 1

            #Compute some information the 10% most central vertices
            
            subgraphIndices = numpy.nonzero(detections <= dayList2[j])[0]
            subgraph = sGraph.subgraph(subgraphIndices)
            subgraphVertexArray = subgraph.getVertexList().getVertices()

            femaleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==1)
            maleSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, genderIndex]==0)
            heteroSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==0)
            biSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, orientationIndex]==1)

            contactSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, contactIndex])
            donorSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, donorIndex])
            randomTestSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, randomTestIndex])
            stdSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, stdIndex])
            prisonerSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, prisonerIndex])
            recommendSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, doctorIndex])

            meanAges[j] = numpy.mean(subgraphVertexArray[top10eigenvectorInds, detectionIndex] - subgraphVertexArray[top10eigenvectorInds, dobIndex])/daysInYear

            havanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, havanaIndex])
            villaClaraSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, villaClaraIndex])
            pinarSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, pinarIndex])
            holguinSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, holguinIndex])
            habanaSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, habanaIndex])
            sanctiSums[j] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, sanctiIndex])

            provinces[j, :] = numpy.sum(subgraphVertexArray[top10eigenvectorInds, 22:37], 0)

            ddist = numpy.bincount(subgraph.outDegreeSequence()[top10eigenvectorInds])
            degrees[j, 0:ddist.shape[0]] = numpy.array(ddist, numpy.float)/numpy.sum(ddist)

            meanDegrees[j] = numpy.mean(subgraph.outDegreeSequence()[top10eigenvectorInds])
            stdDegrees[j] = numpy.std(subgraph.outDegreeSequence()[top10eigenvectorInds])


            plt.figure(plotInd2)
            plt.plot(numpy.arange(degrees[j, :].shape[0]), degrees[j, :], plotStyles2[j], label=dateStr)
            plt.xlabel("Degree")
            plt.ylabel("Probability")
            #plt.ylim((0, 0.5))
            plt.savefig(figureDir + "DegreeDistCentral" +  ".eps")
            plt.legend()
            plotInd2 += 1

        precision = 4
        dateStrList = [DateUtils.getDateStrFromDay(day, startYear) for day in dayList2]

        print("Hop counts")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(hopPlotArray.T))

        print("\nHop counts for configuration graphs")
        print(Latex.listToRow(dateStrList))
        print(Latex.array2DToRows(configHopPlotArray.T))

        print("\n\nEdges and vertices")
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(numVerticesEdgesArray.T, precision)))

        print("\n\nEigenvector distribution")
        print((Latex.array1DToRow(binWidths[1:]) + "\\\\"))
        print((Latex.array2DToRows(eigVectorDists)))

        print("\n\nDistribution of component sizes")
        componentsDistArray = componentsDistArray[:, 0:componentsDist.shape[0]]
        nonZeroCols = numpy.sum(componentsDistArray, 0)!=0
        componentsDistArray = numpy.r_[numpy.array([numpy.arange(componentsDistArray.shape[1])[nonZeroCols]]), componentsDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(componentsDistArray.T, precision)))

        print("\n\nDistribution of component sizes in configuration graphs")
        configComponentsDistArray = configComponentsDistArray[:, 0:configComponentsDist.shape[0]]
        nonZeroCols = numpy.sum(configComponentsDistArray, 0)!=0
        configComponentsDistArray = numpy.r_[numpy.array([numpy.arange(configComponentsDistArray.shape[1])[nonZeroCols]]), configComponentsDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(configComponentsDistArray.T, precision)))

        print("\n\nDistribution of triangle participations")
        triangleDistArray = triangleDistArray[:, 0:triangleDist.shape[0]]
        nonZeroCols = numpy.sum(triangleDistArray, 0)!=0
        triangleDistArray = numpy.r_[numpy.array([numpy.arange(triangleDistArray.shape[1])[nonZeroCols]])/2, triangleDistArray[:, nonZeroCols]]
        print((Latex.listToRow(dateStrList)))
        print((Latex.array2DToRows(triangleDistArray.T, precision)))

        configTriangleDistArray = configTriangleDistArray[:, 0:configTriangleDist.shape[0]]
        nonZeroCols = numpy.sum(configTriangleDistArray, 0)!=0
        configTriangleDistArray = numpy.r_[numpy.array([numpy.arange(configTriangleDistArray.shape[1])[nonZeroCols]])/2, configTriangleDistArray[:, nonZeroCols]]
        configTriangleDistArray = numpy.c_[configTriangleDistArray, numpy.zeros((configTriangleDistArray.shape[0], triangleDistArray.shape[1]-configTriangleDistArray.shape[1]))]

        print("\n\nDistribution of central vertices")
        print((Latex.listToRow(dateStrList)))
        subgraphSizes = numpy.array(maleSums + femaleSums, numpy.float)
        print("Female & " + Latex.array1DToRow(femaleSums*100/subgraphSizes, 1) + "\\\\")
        print("Male & " + Latex.array1DToRow(maleSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Heterosexual & " + Latex.array1DToRow(heteroSums*100/subgraphSizes, 1) + "\\\\")
        print("Bisexual & " + Latex.array1DToRow(biSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Contact traced & " + Latex.array1DToRow(contactSums*100/subgraphSizes, 1) + "\\\\")
        print("Blood donor & " + Latex.array1DToRow(donorSums*100/subgraphSizes, 1) + "\\\\")
        print("RandomTest & " + Latex.array1DToRow(randomTestSums*100/subgraphSizes, 1) + "\\\\")
        print("STD & " + Latex.array1DToRow(stdSums*100/subgraphSizes, 1) + "\\\\")
        print("Prisoner & " + Latex.array1DToRow(prisonerSums*100/subgraphSizes, 1) + "\\\\")
        print("Doctor recommendation & " + Latex.array1DToRow(recommendSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Mean ages (years) & " + Latex.array1DToRow(meanAges, 2) + "\\\\")
        print("\hline")
        print("Holguin & " + Latex.array1DToRow(holguinSums*100/subgraphSizes, 1) + "\\\\")
        print("La Habana & " + Latex.array1DToRow(habanaSums*100/subgraphSizes, 1) + "\\\\")
        print("Havana City & " + Latex.array1DToRow(havanaSums*100/subgraphSizes, 1) + "\\\\")
        print("Pinar del Rio & " + Latex.array1DToRow(pinarSums*100/subgraphSizes, 1) + "\\\\")
        print("Sancti Spiritus & " + Latex.array1DToRow(sanctiSums*100/subgraphSizes, 1) + "\\\\")
        print("Villa Clara & " + Latex.array1DToRow(villaClaraSums*100/subgraphSizes, 1) + "\\\\")
        print("\hline")
        print("Mean degrees & " + Latex.array1DToRow(meanDegrees, 2) + "\\\\")
        print("Std degrees & " + Latex.array1DToRow(stdDegrees, 2) + "\\\\")
        
        print("\n\nProvinces")
        print(Latex.array2DToRows(provinces))

        print("\n\nDegree distribution")
        print(Latex.array2DToRows(degrees))
def plotScalarStats():
    logging.info("Computing scalar stats")

    resultsFileName = resultsDir + "ContactGrowthScalarStats.pkl"

    if saveResults:
        statsArray = graphStats.sequenceScalarStats(sGraph, subgraphIndicesList, slowStats)
        Util.savePickle(statsArray, resultsFileName, True)

        #Now compute statistics on the configuration graphs 
    else:
        statsArray = Util.loadPickle(resultsFileName)

        #Take the mean of the results over the configuration model graphs
        resultsFileNameBase = resultsDir + "ConfigGraphScalarStats"
        numGraphs = len(subgraphIndicesList)
        #configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats(), numConfigGraphs))
        configStatsArrays = numpy.zeros((numGraphs, graphStats.getNumStats()-2, numConfigGraphs))

        for j in range(numConfigGraphs):
            resultsFileName = resultsFileNameBase + str(j)
            configStatsArrays[:, :, j] = Util.loadPickle(resultsFileName)

        configStatsArray = numpy.mean(configStatsArrays, 2)
        configStatsStd =  numpy.std(configStatsArrays, 2)
        global plotInd

        def plotRealConfigError(index, styleReal, styleConfig, realLabel, configLabel):
            plt.hold(True)
            plt.plot(absDayList, statsArray[:, index], styleReal, label=realLabel)
            #errors = numpy.c_[configStatsArray[:, index]-configStatsMinArray[:, index] , configStatsMaxArray[:, index]-configStatsArray[:, index]].T
            errors = numpy.c_[configStatsStd[:, index], configStatsStd[:, index]].T
            plt.plot(absDayList, configStatsArray[:, index], styleConfig, label=configLabel)
            plt.errorbar(absDayList, configStatsArray[:, index], errors, linewidth=0, elinewidth=1, label="_nolegend_", ecolor="red")

            xmin, xmax = plt.xlim()
            plt.xlim((0, xmax))
            ymin, ymax = plt.ylim()
            plt.ylim((0, ymax))


        #Output all the results into plots
        plt.figure(plotInd)
        plt.hold(True)
        plotRealConfigError(graphStats.maxComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Max comp. vertices", "CM max comp. vertices")
        plotRealConfigError(graphStats.maxComponentEdgesIndex, plotStyleBW[1], plotStyles4[1], "Max comp. edges", "CM max comp. edges")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. vertices/edges")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "MaxComponentSizeGrowth.eps")
        plotInd += 1

        for k in range(len(dayList)):
            day = dayList[k]
            print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(statsArray[k, graphStats.maxComponentEdgesIndex]))
            #print(str(DateUtils.getDateStrFromDay(day, startYear)) + ": " + str(configStatsArray[k, graphStats.numComponentsIndex]))

        plt.figure(plotInd)
        plotRealConfigError(graphStats.numComponentsIndex, plotStyleBW[0], plotStyles4[0], "Size >= 1", "CM size >= 1")
        plotRealConfigError(graphStats.numNonSingletonComponentsIndex, plotStyleBW[1], plotStyles4[1], "Size >= 2", "CM size >= 2")
        plotRealConfigError(graphStats.numTriOrMoreComponentsIndex, plotStyleBW[2], plotStyles4[2], "Size >= 3", "CM size >= 3")

        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("No. components")
        plt.legend(loc="upper left")
        plt.savefig(figureDir + "NumComponentsGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanComponentSizeIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean component size")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MeanComponentSizeGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.diameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Max component diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.effectiveDiameterIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "CM")
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Effective diameter")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxComponentEffDiameterGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.meanDegreeIndex, plotStyleBW[0], plotStyles4[0], "All vertices", "CM all vertices")
        plotRealConfigError(graphStats.maxCompMeanDegreeIndex, plotStyleBW[1], plotStyles4[1], "Max component", "CM max component")
        #plt.plot(absDayList, statsArray[:, graphStats.meanDegreeIndex], plotStyleBW[0], absDayList, statsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyleBW[1], absDayList, configStatsArray[:, graphStats.meanDegreeIndex], plotStyles4[0], absDayList, configStatsArray[:, graphStats.maxCompMeanDegreeIndex], plotStyles4[1])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean degree")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MeanDegrees.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.densityIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.densityIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.densityIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Density")
        plt.legend()
        plt.savefig(figureDir + "DensityGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plt.plot(absDayList, statsArray[:, graphStats.powerLawIndex], plotStyleBW[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Alpha")
        plt.savefig(figureDir + "PowerLawGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.geodesicDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistanceIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Geodesic distance")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "GeodesicGrowth.eps")
        plotInd += 1

        plt.figure(plotInd)
        plotRealConfigError(graphStats.harmonicGeoDistanceIndex, plotStyleBW[0], plotStyles4[0], "Real Graph", "Config Model")
        #plt.plot(absDayList, statsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.harmonicGeoDistanceIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Mean harmonic geodesic distance")
        plt.legend(loc="upper right")
        plt.savefig(figureDir + "HarmonicGeodesicGrowth.eps")
        plotInd += 1

        #print(statsArray[:, graphStats.harmonicGeoDistanceIndex])

        plt.figure(plotInd)
        plotRealConfigError(graphStats.geodesicDistMaxCompIndex, plotStyleBW[0], plotStyles4[0], "Real graph", "Config model")
        #plt.plot(absDayList, statsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyleBW[0], absDayList, configStatsArray[:, graphStats.geodesicDistMaxCompIndex], plotStyles4[0])
        plt.xticks(locs, labels)
        plt.xlabel("Year")
        plt.ylabel("Max component mean geodesic distance")
        plt.legend(loc="lower right")
        plt.savefig(figureDir + "MaxCompGeodesicGrowth.eps")
        plotInd += 1

        #Find the number of edges in the infection graph
        resultsFileName = resultsDir + "InfectGrowthScalarStats.pkl"
        infectStatsArray = Util.loadPickle(resultsFileName)

        #Make sure we don't include 0 in the array
        vertexIndex = numpy.argmax(statsArray[:, graphStats.numVerticesIndex] > 0)
        edgeIndex = numpy.argmax(infectStatsArray[:, graphStats.numEdgesIndex] > 0)
        minIndex = numpy.maximum(vertexIndex, edgeIndex)

        plt.figure(plotInd)
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(statsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[0])
        plt.plot(numpy.log(infectStatsArray[minIndex:, graphStats.numVerticesIndex]), numpy.log(infectStatsArray[minIndex:, graphStats.numEdgesIndex]), plotStyleBW[1])
        plt.plot(numpy.log(statsArray[minIndex:, graphStats.maxComponentSizeIndex]), numpy.log(statsArray[minIndex:, graphStats.maxComponentEdgesIndex]), plotStyleBW[2])
        plt.xlabel("log(|V|)")
        plt.ylabel("log(|E|)/log(|D|)")
        plt.legend(("Contact graph", "Infection graph", "Max component"), loc="upper left")
        plt.savefig(figureDir + "LogVerticesEdgesGrowth.eps")
        plotInd += 1

    results = statsArray[:, graphStats.effectiveDiameterIndex] 
    results = numpy.c_[results, configStatsArray[:, graphStats.effectiveDiameterIndex]]
    results = numpy.c_[results, statsArray[:, graphStats.geodesicDistMaxCompIndex]]
    results = numpy.c_[results, configStatsArray[:, graphStats.geodesicDistMaxCompIndex]]
    configStatsArray

    print("\n\n")
    print(Latex.listToRow(["Diameter", "CM Diameter", "Mean Geodesic", "CM Mean Geodesic"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[i, :]) + "\\\\")
def plotVertexStats():
    #Calculate all vertex statistics
    logging.info("Computing vertex stats")
    
    #Indices
    numContactsIndex = fInds["numContacts"]
    numTestedIndex = fInds["numTested"]
    numPositiveIndex = fInds["numPositive"]

    #Properties of vertex values
    detectionAges = []
    deathAfterInfectAges = []
    deathAges = []
    homoMeans = []

    maleSums = []
    femaleSums = []
    heteroSums = []
    biSums = []

    contactMaleSums = []
    contactFemaleSums = []
    contactHeteroSums = []
    contactBiSums = []

    doctorMaleSums = []
    doctorFemaleSums = []
    doctorHeteroSums = []
    doctorBiSums = []

    contactSums = []
    nonContactSums = []
    donorSums = []
    randomTestSums = []
    stdSums = []
    prisonerSums = []
    recommendSums = []
    #This is: all detections - contact, donor, randomTest, str, recommend
    otherSums = []

    havanaSums = []
    villaClaraSums = []
    pinarSums = []
    holguinSums = []
    habanaSums = []
    sanctiSums = []

    numContactSums = []
    numTestedSums = []
    numPositiveSums = []

    #Total number of sexual contacts 
    numContactMaleSums = []
    numContactFemaleSums = []
    numContactHeteroSums = []
    numContactBiSums = []

    numTestedMaleSums = []
    numTestedFemaleSums = []
    numTestedHeteroSums = []
    numTestedBiSums = []

    numPositiveMaleSums = []
    numPositiveFemaleSums = []
    numPositiveHeteroSums = []
    numPositiveBiSums = []

    propPositiveMaleSums = []
    propPositiveFemaleSums = []
    propPositiveHeteroSums = []
    propPositiveBiSums = []

    numContactVertices = []
    numContactEdges = []
    numInfectEdges = []

    #Mean proportion of degree at end of epidemic 
    meanPropDegree = []
    finalDegreeSequence = numpy.array(sGraph.outDegreeSequence(), numpy.float) 

    degreeOneSums = []
    degreeTwoSums = []
    degreeThreePlusSums = []

    numProvinces = 15
    provinceArray = numpy.zeros((len(subgraphIndicesList), numProvinces))
    m = 0 

    for subgraphIndices in subgraphIndicesList: 
        subgraph = sGraph.subgraph(subgraphIndices)
        infectSubGraph = sGraphInfect.subgraph(subgraphIndices)

        subgraphVertexArray = subgraph.getVertexList().getVertices(range(subgraph.getNumVertices()))

        detectionAges.append(numpy.mean((subgraphVertexArray[:, detectionIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear)
        deathAfterInfectAges.append((numpy.mean(subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, detectionIndex]))/daysInYear)
        deathAges.append(numpy.mean((subgraphVertexArray[:, deathIndex] - subgraphVertexArray[:, dobIndex]))/daysInYear)
        homoMeans.append(numpy.mean(subgraphVertexArray[:, orientationIndex]))

        nonContactSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, contactIndex]))
        contactSums.append(numpy.sum(subgraphVertexArray[:, contactIndex]))
        donorSums.append(numpy.sum(subgraphVertexArray[:, donorIndex]))
        randomTestSums.append(numpy.sum(subgraphVertexArray[:, randomTestIndex]))
        stdSums.append(numpy.sum(subgraphVertexArray[:, stdIndex]))
        prisonerSums.append(numpy.sum(subgraphVertexArray[:, prisonerIndex]))
        recommendSums.append(numpy.sum(subgraphVertexArray[:, doctorIndex]))
        otherSums.append(subgraphVertexArray.shape[0] - numpy.sum(subgraphVertexArray[:, [contactIndex, donorIndex, randomTestIndex, stdIndex, doctorIndex]]))

        heteroSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==0))
        biSums.append(numpy.sum(subgraphVertexArray[:, orientationIndex]==1))

        femaleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==1))
        maleSums.append(numpy.sum(subgraphVertexArray[:, genderIndex]==0))

        contactHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, contactIndex])))
        contactBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, contactIndex])))
        contactFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, contactIndex])))
        contactMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, contactIndex])))

        doctorHeteroSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==0, subgraphVertexArray[:, doctorIndex])))
        doctorBiSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, orientationIndex]==1, subgraphVertexArray[:, doctorIndex])))
        doctorFemaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==1, subgraphVertexArray[:, doctorIndex])))
        doctorMaleSums.append(numpy.sum(numpy.logical_and(subgraphVertexArray[:, genderIndex]==0, subgraphVertexArray[:, doctorIndex])))

        havanaSums.append(numpy.sum(subgraphVertexArray[:, havanaIndex]==1))
        villaClaraSums.append(numpy.sum(subgraphVertexArray[:, villaClaraIndex]==1))
        pinarSums.append(numpy.sum(subgraphVertexArray[:, pinarIndex]==1))
        holguinSums.append(numpy.sum(subgraphVertexArray[:, holguinIndex]==1))
        habanaSums.append(numpy.sum(subgraphVertexArray[:, habanaIndex]==1))
        sanctiSums.append(numpy.sum(subgraphVertexArray[:, sanctiIndex]==1))

        numContactSums.append(numpy.mean(subgraphVertexArray[:, numContactsIndex]))
        numTestedSums.append(numpy.mean(subgraphVertexArray[:, numTestedIndex]))
        numPositiveSums.append(numpy.mean(subgraphVertexArray[:, numPositiveIndex]))

        numContactMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numContactsIndex]))
        numContactFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numContactsIndex]))
        numContactHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numContactsIndex]))
        numContactBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numContactsIndex]))

        numTestedMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numTestedIndex]))
        numTestedFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numTestedIndex]))
        numTestedHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numTestedIndex]))
        numTestedBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numTestedIndex]))

        numPositiveMaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==0, numPositiveIndex]))
        numPositiveFemaleSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, genderIndex]==1, numPositiveIndex]))
        numPositiveHeteroSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==0, numPositiveIndex]))
        numPositiveBiSums.append(numpy.mean(subgraphVertexArray[subgraphVertexArray[:, orientationIndex]==1, numPositiveIndex]))

        propPositiveMaleSums.append(numPositiveMaleSums[m]/float(numTestedMaleSums[m]))
        propPositiveFemaleSums.append(numPositiveFemaleSums[m]/float(numTestedFemaleSums[m]))
        propPositiveHeteroSums.append(numPositiveHeteroSums[m]/float(numTestedHeteroSums[m]))
        propPositiveBiSums.append(numPositiveBiSums[m]/float(numTestedMaleSums[m]))

        numContactVertices.append(subgraph.getNumVertices())
        numContactEdges.append(subgraph.getNumEdges())
        numInfectEdges.append(infectSubGraph.getNumEdges())

        nonZeroInds = finalDegreeSequence[subgraphIndices]!=0
        propDegrees = numpy.mean(subgraph.outDegreeSequence()[nonZeroInds]/finalDegreeSequence[subgraphIndices][nonZeroInds])
        meanPropDegree.append(numpy.mean(propDegrees)) 

        degreeOneSums.append(numpy.sum(subgraph.outDegreeSequence()==1))
        degreeTwoSums.append(numpy.sum(subgraph.outDegreeSequence()==2))
        degreeThreePlusSums.append(numpy.sum(subgraph.outDegreeSequence()>=3))

        provinceArray[m, :] = numpy.sum(subgraphVertexArray[:, fInds["CA"]:fInds['VC']+1], 0)
        m += 1 

    #Save some of the results for the ABC work
    numStats = 2 
    vertexStatsArray = numpy.zeros((len(subgraphIndicesList), numStats))
    vertexStatsArray[:, 0] = numpy.array(biSums)
    vertexStatsArray[:, 1] = numpy.array(heteroSums)

    resultsFileName = resultsDir + "ContactGrowthVertexStats.pkl"
    Util.savePickle(vertexStatsArray, resultsFileName)

    global plotInd 

    plt.figure(plotInd)
    plt.plot(absDayList, detectionAges)
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detection Age (years)")
    plt.savefig(figureDir + "DetectionMeansGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, heteroSums, 'k-', absDayList, biSums, 'k--', absDayList, femaleSums, 'k-.', absDayList, maleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, contactHeteroSums, 'k-', absDayList, contactBiSums, 'k--', absDayList, contactFemaleSums, 'k-.', absDayList, contactMaleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Contact tracing detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderContact.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, doctorHeteroSums, 'k-', absDayList, doctorBiSums, 'k--', absDayList, doctorFemaleSums, 'k-.', absDayList, doctorMaleSums, 'k:')
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Doctor recommendation detections")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper left")
    plt.savefig(figureDir + "OrientationGenderDoctor.eps")
    plotInd += 1



    #Plot all the provinces 
    plt.figure(plotInd)
    plt.hold(True)
    for k in range(provinceArray.shape[1]):
        plt.plot(absDayList, provinceArray[:, k], label=str(k))
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(loc="upper left")
    plotInd += 1 

    #Plot of detection types
    plt.figure(plotInd)
    plt.plot(absDayList, contactSums, plotStyles2[0], absDayList, donorSums, plotStyles2[1], absDayList, randomTestSums, plotStyles2[2], absDayList, stdSums, plotStyles2[3], absDayList, otherSums, plotStyles2[4], absDayList, recommendSums, plotStyles2[5])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Contact tracing", "Blood donation", "Random test", "STD", "Other test", "Doctor recommendation"), loc="upper left")
    plt.savefig(figureDir + "DetectionGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactSums, plotStyleBW[0], absDayList, numTestedSums, plotStyleBW[1], absDayList, numPositiveSums, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Contacts")
    plt.legend(("No. contacts", "No. tested", "No. positive"), loc="center left")
    plt.savefig(figureDir + "ContactsGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactHeteroSums, plotStyleBW[0], absDayList, numContactBiSums, plotStyleBW[1], absDayList, numContactFemaleSums, plotStyleBW[2], absDayList, numContactMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Total contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "ContactsGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numTestedHeteroSums, plotStyleBW[0], absDayList, numTestedBiSums, plotStyleBW[1], absDayList, numTestedFemaleSums, plotStyleBW[2], absDayList, numTestedMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Tested contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "TestedGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numPositiveHeteroSums, plotStyleBW[0], absDayList, numPositiveBiSums, plotStyleBW[1], absDayList, numPositiveFemaleSums, plotStyleBW[2], absDayList, numPositiveMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Positive contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "PositiveGrowthOrientGen.eps")
    plotInd += 1

    #Proportion positive versus tested
    plt.figure(plotInd)
    plt.plot(absDayList, propPositiveHeteroSums, plotStyleBW[0], absDayList, propPositiveBiSums, plotStyleBW[1], absDayList, propPositiveFemaleSums, plotStyleBW[2], absDayList, propPositiveMaleSums, plotStyleBW[3])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Proportion positive contacts")
    plt.legend(("Heterosexual", "MSM", "Female", "Male"), loc="upper right")
    plt.savefig(figureDir + "PercentPositiveGrowthOrientGen.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.hold(True)
    plt.plot(absDayList, havanaSums, plotStyles2[0])
    plt.plot(absDayList, villaClaraSums, plotStyles2[1])
    plt.plot(absDayList, pinarSums, plotStyles2[2])
    plt.plot(absDayList, holguinSums, plotStyles2[3])
    plt.plot(absDayList, habanaSums, plotStyles2[4])
    plt.plot(absDayList, sanctiSums, plotStyles2[5])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"), loc="upper left")
    plt.savefig(figureDir + "ProvinceGrowth.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, numContactVertices, plotStyleBW[0], absDayList, numContactEdges, plotStyleBW[1], absDayList, numInfectEdges, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Vertices/edges")
    plt.legend(("Contact vertices", "Contact edges", "Infect edges"), loc="upper left")
    plt.savefig(figureDir + "VerticesEdges.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, meanPropDegree, plotStyleBW[0])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Proportion of final degree")
    plt.savefig(figureDir + "MeanPropDegree.eps")
    plotInd += 1

    plt.figure(plotInd)
    plt.plot(absDayList, degreeOneSums, plotStyleBW[0], absDayList, degreeTwoSums, plotStyleBW[1], absDayList, degreeThreePlusSums, plotStyleBW[2])
    plt.xticks(locs, labels)
    plt.xlabel("Year")
    plt.ylabel("Detections")
    plt.legend(("Degree = 1", "Degree = 2", "Degree >= 3"), loc="upper left")
    plotInd += 1

    #Print a table of interesting stats
    results = numpy.array([havanaSums])
    results = numpy.r_[results, numpy.array([villaClaraSums])]
    results = numpy.r_[results, numpy.array([pinarSums])]
    results = numpy.r_[results, numpy.array([holguinSums])]
    results = numpy.r_[results, numpy.array([habanaSums])]
    results = numpy.r_[results, numpy.array([sanctiSums])]

    print(Latex.listToRow(["Havana City", "Villa Clara", "Pinar del Rio", "Holguin", "La Habana", "Sancti Spiritus"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\")

    results = numpy.array([heteroSums])
    results = numpy.r_[results, numpy.array([biSums])]
    results = numpy.r_[results, numpy.array([femaleSums])]
    results = numpy.r_[results, numpy.array([maleSums])]

    print("\n\n")
    print(Latex.listToRow(["Heterosexual", "MSM", "Female", "Male"]))
    print("\\hline")
    for i in range(0, len(dayList), 4):
        day = dayList[i]
        print(str(DateUtils.getDateStrFromDay(day, startYear)) + " & " + Latex.array1DToRow(results[:, i].T) + "\\\\")