def __init__(self, ticker_list, seed_money, start_date = 1592294400, build_database = False):
     self.gd = getData()
     self.portfolio = {ticker: {'S':[0,0],'C':[0,0],'P':[0,0]} for ticker in ticker_list}
     self.balance = seed_money
     self.cost_basis = pd.DataFrame(columns=['Ticker', 'Type', 'Quantity', 'Cost', 'Time', 'Cash'])
     if build_database:
         self.build_database(start_date)
     self.data = pd.read_csv('data.csv').drop(columns=['Unnamed: 0'])
     self.data['datetime'] = self.data['datetime'].apply(lambda x: datetime.datetime.strptime( x,"%Y-%m-%d %H:%M:%S"))
Esempio n. 2
0
def full(username):
    data = api.getData(username)
    # follows = data["follows"]["count"]
    # followed_by = data["followed_by"]["count"]
    # bio = data["biography"]
    # images = []
    # media = data["media"]["nodes"]
    # for image in media:
    # images.append({"image": image["display_src"], "likes": image["likes"]["count"]})
    # formatted = {"follows": follows, "followed_by": followed_by, "bio": bio, "images": images}
    return str(data)
Esempio n. 3
0
File: 07.py Progetto: Kontowicz/WTI
    def ratings(self):
        if cherrypy.request.method == 'POST':
            input_json = cherrypy.request.json
            api.add(input_json)
            api.print(input_json)
            return 'Succes'

        elif cherrypy.request.method == 'GET':
            ratings = api.getData()[:100]
            return ratings
        elif cherrypy.request.method == 'DELETE':
            api.delete()
            return 'Succes'
Esempio n. 4
0
def getUsage(type,phase,room):
	""" 	type 	- percent 	-> 	percentage of your bandwidth used
					- left		->	quantity in GB of your bandwidth left
					- usage 	->	quantity in GB of your bandwidth usage
					- all 		->	summary of your usage
			phase	must be 1, 2  or 3
			room	must be an existing room in the block
	"""

	return api.getData(phase,room,datetime.now().month)

	if type == "percent":
		return "{:0.2f}%".format(pct)
	if type == "left":
		return "{:0.2f}GB".format(left)
	if type =="usage":
		return "{:0.2f}GB".format(usage/1024)
	if type =="all":
		return "Used :\t\t{:0.2f}GB ({:0.2f}%)\nLeft :\t\t{:0.2f}GB ({:0.2f}%)\nTotal :\t\t{:0.2f}GB".format(usage/1024,pct,left,100-pct,max/1024)
	raise Exception('Must choose between "percent" and "left" ')	
Esempio n. 5
0
def upload():
    # Get the name of the uploaded file
    file = request.files['file']
    username = request.form['username']
    data = api.getData(username)
    follows = data["follows"]["count"]
    followers = data["followed_by"]["count"]
    # Check if the file is one of the allowed types/extensions
    if file and allowed_file(file.filename):
        # Make the filename safe, remove unsupported chars
        filename = secure_filename(file.filename)
        # Move the file form the temporal folder to
        # the upload folder we setup
        file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
        # Redirect the user to the uploaded_file route, which
        # will basicaly show on the browser the uploaded file
        image = ClImage(file_obj=open('uploads/' + filename, 'rb'))
        results = []
        classes = []
        probs = []
        imageinfo = model.predict([image])
        for i in imageinfo['outputs'][0]['data']['concepts']:
            classes.append(i['name'])
            probs.append(i['value'])
        # results.append({'result': {'tag': {'classes': classes, 'probs': probs}}})
        tag_pool = []
        # for result in results:
        # result = result["result"]["tag"]
        # tag_pool.extend(result["classes"])
        # users_omega['naimmiah08'] = results #needs to be changed for username
        getTags = db.tags_pool.find()
        for tags in getTags:
            # print tags['tags']
            tag_pool.extend(tags['tags'])
        tag_pool = set(tag_pool)
        # db.tags_pool.update({'id': 1}, { '$set' : {'tags': list(tag_pool)}})
        image = []
        for tag in tag_pool:
            if tag in classes:
                image.append(1)
                idx = classes.index(tag)
                image.append(probs[idx])
            else:
                image.append(0)
                image.append(0)
        # print follows, followers
        image.append(follows >= follows_median)
        image.append(followers >= followers_median)
        likes = linearClassifier.predict(image)
        # print len(image)
        # print likes
        # for user in users_omega:
        # data = api.getData(user)
        # follows = data["follows"]["count"]
        # followed_by = data["followed_by"]["count"]
        # bio = data["biography"]
        # media = api.getPictures(user)
        # media = data["media"]["nodes"]
        # results = users_omega[user]
        # i = 0
        # for result in results:
        # features = []
        # result = result["result"]["tag"]
        # item = media[i]
        # likes.append(item["likes"]["count"])
        # caption = item["caption"]
        # classes = result["classes"]
        # probs = result["probs"]
        # for tag in tag_pool:
        # if tag in classes:
        # features.append(1)
        # idx = classes.index(tag)
        # features.append(probs[idx])
        # else:
        # features.append(0)
        # features.append(0)
        # features.append(follows)
        # features.append(followed_by)
        # following.append(follows)
        # followers.append(followed_by)
        # i = i + 1
        # images.append(features)
        # images = dataset[0]
        # likes = dataset[1]
        # print images
        # print likes
        return render_template("result.html",
                               image=filename,
                               username=username,
                               likes=ceil(likes[0]))
    return "jam ciemny jest wschrod"
def lambda_handler(event,context):
    s3_client = boto3.client('s3', 
                    aws_access_key_id=config.AWS_ACCESS_KEY,
                    aws_secret_access_key=config.AWS_SECRET_KEY)
    csv_obj = s3_client.get_object(Bucket = config.AWS_S3_BUCKET,Key = config.AWS_S3_FILE_KEY)
    body = csv_obj['Body']
    json_string = body.read().decode('utf-8')
    staffRecord = json.loads(json_string)
    body.close()

    frame = {
        "frameId" : event['frameId'],
        "timestamp" : event['eventTimestamp'],
        "imageUrl" : event['imageUrl'],
        "site" : event['site']
    }
    
    recordList = []

    eventList = api.getData(event)
        
    for member in config.memberList:
        flag = 0
        for i in eventList:
            if member in i:
                flag = 1
        if flag ==1:
            continue
        
        print(member)

        if  member not in staffRecord:
            continue
        judge = staffRecord[member]

        # member last Record In not trigger this function

            

            
        eventProfile = {
                "frameId" : judge['frameId'],
                "eventTimestamp" : judge['eventTimestamp'],
                "name" : member,
                "frameUrl":judge['frameUrl'],
                "site" :"OUT"
            }
        staffRecord[eventProfile['name']] = eventProfile
        api.writeData(staffRecord)

        frame2 = {
                "frameId" :  judge['frameId'],
                "timestamp" :judge['eventTimestamp'],
                "imageUrl" : judge['frameUrl'],
                "site" : "OUT"
            }

        behaviorDetection = {
                "personId" : member,
                "inTime" : 0,
                "outTime" : judge['eventTimestamp'],
                "isMember" :1,
                "stayTime" : judge['eventTimestamp']- event['eventTimestamp'],
                "coordinate_x" : 0.0,
                "coordinate_y" : 0.0
            }

            
        fraudModel = {
                "frame" :[frame2],
                "behaviorDetection" : behaviorDetection
            }
        recordList.append(fraudModel)

    if len(eventList) !=0:
        print(len(eventList))
        for count in range(len(eventList)):
            
            eventProfile = {
                "frameId" : eventList[count][0],
                "eventTimestamp" : eventList[count][1],
                "name" : eventList[count][2],
                "frameUrl":eventList[count][3],
                "site" :eventList[count][4]
            }
            print(eventProfile)

            if eventProfile['name'] not in staffRecord:
                staffRecord[eventProfile['name']] = eventProfile
                api.writeData(staffRecord)
                continue 
            recordProfile = staffRecord[eventProfile['name']]
            print(recordProfile)

            frame2 = {
                        "frameId" :  recordProfile['frameId'],
                        "timestamp" :recordProfile['eventTimestamp'],
                        "imageUrl" : recordProfile['frameUrl'],
                        "site" : recordProfile['site']
                    }
            
                

            if eventProfile['site'] == 'IN':
                    # last Time  is "OUT"
                    # stay Time = in -out
                    #[frame,frame2] = [IN,OUT]
                    

                behaviorDetection = {
                    "personId" : eventProfile['name'],
                    "inTime" : eventProfile['eventTimestamp'],
                    "outTime" : recordProfile['eventTimestamp'],
                    "isMember" :1,
                    "stayTime" : recordProfile['eventTimestamp'] - eventProfile['eventTimestamp'],
                    "coordinate_x" : 0.0,
                    "coordinate_y" : 0.0
                    }

                fraudModel = {
                    "frame" :[frame,frame2],
                    "behaviorDetection" : behaviorDetection
                    }
                staffRecord[eventProfile['name']] = eventProfile
                api.writeData(staffRecord)
                recordList.append(fraudModel)



    return recordList
Esempio n. 7
0
tag_pool = []

users_omega = {}

images = []
likes = []

following = []
followers = []

max_clarifai_limit = 128

# predict with the model
for user in users:
	print "Doing user " + user
	data = api.getData(user)
	media = api.getPictures(user)
	# media = data["media"]["nodes"]
	image_links = []
	results = []
	for mediaItem in media:
		image_links.append(mediaItem["display_src"])
		imageinfo = model.predict_by_url(mediaItem["display_src"])
		classes = []
		probs = []
		for i in imageinfo['outputs'][0]['data']['concepts']:
			classes.append(i['name'])
			probs.append(i['value'])
		results.append({'result': {'tag': {'classes': classes, 'probs': probs}}})
		classes = []
		probs = []
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 30 01:48:15 2020

@author: apolat
"""

from api import getData 
import pandas as pd
from datetime import datetime



gd = getData()

ticker = 'AAPL'

def option_chain_summary(ticker, strikeCount = 5):
    option_data = gd.OptionChain(ticker, strikeCount = strikeCount)
    df = []
    if option_data['callExpDateMap'].keys() == option_data['putExpDateMap'].keys():
        for key in option_data['callExpDateMap']:
            for strike in option_data['callExpDateMap'][key]:
                l=[]
                l.append(key)
                l.append(option_data['callExpDateMap'][key][strike][0]['last'])
                l.append(option_data['callExpDateMap'][key][strike][0]['totalVolume'])
                l.append(float(strike))
                l.append(option_data['putExpDateMap'][key][strike][0]['last'])
                l.append(option_data['putExpDateMap'][key][strike][0]['totalVolume'])
Esempio n. 9
0
def list():
    ratings = api.getData()[:100]
    return json.dumps(ratings)