Esempio n. 1
0
    def fitness_func(chromosome: Chromosome) -> float:
        fitness = 0.0
        create_tf_session()
        params = chromosome.values

        print("Current Chromosome Params:")
        print(params)
        model = Model(train_x,
                      train_y,
                      validation_x,
                      validation_y,
                      preprocessor.get_seq_info_str(),
                      architecture=Architecture.GRU.value,
                      is_bidirectional=False,
                      batch_size=round(params["batch_size"]),
                      hidden_layers=round(params["hidden_layers"]),
                      neurons_per_layer=round(params["neurons_per_layer"]),
                      dropout=params["dropout"],
                      initial_learn_rate=params["initial_learn_rate"],
                      is_classification=IS_CLASSIFICATION)
        model.train()
        if IS_CLASSIFICATION:
            fitness = -model.score["sparse_categorical_crossentropy"]
            chromosome.other["sparse_categorical_crossentropy"] = model.score[
                "sparse_categorical_crossentropy"]
            chromosome.other["accuracy"] = model.score["accuracy"]
        else:
            fitness = model.score["RSquaredMetric"]
            chromosome.other["mae"] = model.score["mae"]

        ## Cleanup
        del model
        K.clear_session()

        return fitness
Esempio n. 2
0
    def db(params):
        if len(params) == 0:
            return

        if params[0] == 'list':
            dbs = os.listdir("./db/")
            App_tpl.list_dbs(dbs)
        elif params[0] == 'use' and len(params) == 2:
            print("Now using: " + params[1])
            Model.init(params[1])
 def test_word_recognition(self):
     model = Model(open('../model/charList.txt').read(), "../model/")
     scan_number = 0
     line_number = 7
     word_number = 0
     print(test_word(scan_number, line_number, word_number, model))
     self.assertEqual(True, True)
Esempio n. 4
0
def run_program(pubquiz_answer_sheets, save_image=False, db=None):
    print("De officiele Ordina pub-quiz antwoord vinder")
    model = Model(open('model/charList.txt').read())

    answersheet_id = -1
    for answer_sheets in pubquiz_answer_sheets:
        # The pdf file. We can it and it returns 1 to multiple answer pages
        pages = convert_pdf_to_image(answer_sheets)
        for p in range(0, len(pages)):
            # We take the name from the file. But we want it without any extension.
            file_extension = os.path.splitext(answer_sheets)
            sheet_name = answer_sheets
            if file_extension[1] == ".pdf":
                sheet_name = sheet_name[0:-4]
            sheet_name = sheet_name + "_" + str(p)

            answersheet_id = save_to_database.save_answersheet_database(
                db, pages[p])

            if answersheet_id == -1:
                print("something went wrong, no answersheet id present")
                exit()
            else:
                process_sheet(pages[p], model, save_image, sheet_name, db,
                              answersheet_id)
Esempio n. 5
0
    def __init__(self, app: QApplication):
        super(Ui, self).__init__()

        self.parent = app

        self.model = Model(n=50)
        self.ui = uic.loadUi('MainWindow.ui', self)

        self.ui.openFile.clicked.connect(self.onOpenFile)
        self.ui.exec.clicked.connect(self.Exec)

        self.ui.center()
        self.ui.setWindowIcon(QIcon('web.jpg'))

        self.init_menu()
        self.statusBar().showMessage('Готов к работе...')

        self.show()
    def test_test_word(self):
        model = Model(open('../model/charList.txt').read(), "../model/")
        path = "test_words/test_1.PNG"

        word = cv2.imread(path)
        show_image(word)
        if word is not None:
            read_results = read_word_from_image(word, model)
            return read_results
        return None
Esempio n. 7
0
 def test_all_words(self):
     model = Model(open('../model/charList.txt').read(), "../model/")
     scan_path = "test_files/word_files/"
     scans = [scans for scans in os.listdir(scan_path)]
     for scan in range(0, len(scans)):
         lines = [lines for lines in os.listdir(scan_path + scans[scan])]
         for line in range(0, len(lines)):
             words = [words for words in os.listdir(scan_path + scans[scan] + "/" + lines[line])]
             for word in range(0, len(words)):
                 print(test_word(scan, line, word, model))
     # If it arrives here without errors it has successfully attempted to recognize all words without errors
     self.assertTrue(True)
Esempio n. 8
0
def run_pubquiz_program(answer_sheets):
    print("De officiele Ordina pub-quiz antwoord vinder")
    model = Model(open('model/charList.txt').read())

    # Not the cleanest way to detect an error, but the fastest to implement
    problem = False
    for p in convert_pdf_to_image(answer_sheets):
        if p is not None:
            try:
                print("start processing answersheet")
                if process_sheet(p, model):
                    problem = True
            except:
                return "Bestand uploaden mislukt. Het bestand kan niet uitgelezen worden."
    if problem:
        return "Bestand uploaden mislukt. Het bestand kan niet uitgelezen worden."
Esempio n. 9
0
    def load_model(self, filename):
        self.model = Model.Model()
        self.model.initialize(filename)

        self.open_file = filename
        self.opened = True

        self.view.setWindowTitle("MPect - " + self.open_file)

        self.mode = "view"
        self.labelText.setText("Opened " + self.open_file)
        self.showPlot()

        self.mode = "slice"
        self.view.plotText.setText("<p>Slice Mode</p>")

        self.view.resetAllRatios()
def train_model():
    preprocessor = DataPreprocesser(
        f"{os.environ['WORKSPACE']}/data/crypto/{SYMBOL_TO_PREDICT}.parquet",
        col_names=["open", "high", "low", "close", "volume"],
        forecast_col_name="close",
        sequence_length=100,
        forecast_period=10,
        is_classification=IS_CLASSIFICATION)
    if not preprocessor.has_loaded and SHOULD_USE_INDICATORS:
        indicator_df = get_select_indicator_values(preprocessor.df_original)
        preprocessor.change_data(indicator_df)
        preprocessor.print_df()
        preprocessor.print_df_no_std()

    preprocessor.preprocess()

    train_x, train_y = preprocessor.get_train()
    validation_x, validation_y = preprocessor.get_validation()

    # Best hyperparams from GA:
    # batch_size=1534,
    # hidden_layers=2,
    # neurons_per_layer=60,
    # dropout=0.4714171367290059,
    # initial_learn_rate=0.003725545984696872,

    model = Model(train_x,
                  train_y,
                  validation_x,
                  validation_y,
                  preprocessor.get_seq_info_str(),
                  architecture=Architecture.GRU.value,
                  is_bidirectional=False,
                  batch_size=1534,
                  hidden_layers=2,
                  neurons_per_layer=60,
                  dropout=0.4164892976819227,
                  initial_learn_rate=0.004587161725770879,
                  early_stop_patience=10,
                  max_epochs=100,
                  is_classification=IS_CLASSIFICATION)

    preprocessor.print_dataset_totals()
    del preprocessor  # Save memory

    model.train()
    model.save_model()
Esempio n. 11
0
class Ui(QMainWindow):

    parent = False

    def __init__(self, app: QApplication):
        super(Ui, self).__init__()

        self.parent = app

        self.model = Model(n=50)
        self.ui = uic.loadUi('MainWindow.ui', self)

        self.ui.openFile.clicked.connect(self.onOpenFile)
        self.ui.exec.clicked.connect(self.Exec)

        self.ui.center()
        self.ui.setWindowIcon(QIcon('web.jpg'))

        self.init_menu()
        self.statusBar().showMessage('Готов к работе...')

        self.show()

    menuActions = {}
    menuSubActions = {}

    def onOpenFile(self):
        self.statusBar().showMessage('Выберите файл...')
        settings = QSettings()

        ref = settings.value('settings/ref', '', type=str)
        data = settings.value('settings/data', '', type=str)

        if Validator.fileExist(ref) and Validator.fileExist(data):
            question = QMessageBox.question(
                self, 'Кэш',
                'Использовать прошлые файлы, чтобы не выбирать новые? \n{}\n{}'
                .format(ref, data), QMessageBox.Yes | QMessageBox.No)

            if question == QMessageBox.Yes:
                self.model.set_two_files(data, ref)
                return QMessageBox.information(
                    self, "Успешно", "Теперь можно настраивать ограничения")

        QMessageBox.information(self, "Файл",
                                "Выберите сначала ref файл, а затем data")

        fileRef = QFileDialog.getOpenFileName(self, "Выберите ref файл")[0]
        fileData = QFileDialog.getOpenFileName(self, "Выберите data файл")[0]

        if Validator.fileExist(fileRef) is False or Validator.fileExist(
                fileData) is False:
            return QMessageBox.warning(
                self, 'Ошибка', 'Вы не выбрали файл или его не существует')

        settings.setValue('settings/ref', fileRef)
        settings.setValue('settings/data', fileData)

        self.model.set_two_files(fileData, fileRef)
        return QMessageBox.information(self, "Успешно",
                                       "Теперь можно настраивать ограничения")

    def Exec(self):
        self.model.set_delete_num(self.ui.deleteLine.text())
        self.model.set_speed_limit(self.ui.speedLine.text())
        self.model.set_average_num(self.ui.averageLine.text())

        ret = False
        try:
            ret = self.model.from_two_files()
        except BaseException as e:
            print(str(e))

        if (ret):
            QMessageBox.information(self, "Успешно",
                                    "Операция успешно завершилась")
            self.statusBar().showMessage('Операция успешно завершена')
        else:
            self.statusBar().showMessage('Произошла ошибка')

    def init_menu(self):
        self.ui.addMenuMain("Файл")
        self.ui.AddMenuSub("Файл", "Выход", "exit.png", "close")

        self.setWindowTitle("ADCP. Главное окно")

    def AddMenuSep(self, name):
        self.menuActions[name].addSeparator()

    def addMenuMain(self, name: str):
        self.menuActions[name] = self.menuBar().addMenu(name)

    def AddMenuSub(self, mainPoint: str, name: str, icon: str, connect):
        self.menuSubActions[name] = QAction(QIcon(icon), name, self)

        if (type(connect) == type("str") and connect == 'close'):
            self.menuSubActions[name].triggered.connect(self.close)
        else:
            self.menuSubActions[name].triggered.connect(connect)

        self.menuActions[mainPoint].addAction(self.menuSubActions[name])

    def center(self):
        qr = self.frameGeometry()
        cp = QDesktopWidget().availableGeometry().center()
        qr.moveCenter(cp)
        self.move(qr.topLeft())
Esempio n. 12
0
#! /usr/bin/python3

from app.App import App
from app.Model import Model

# APP GLOBALS

# INIT

Model.init()

App.init()

# MAIN

App.start()
def test_model():
    # model = Model.instance('Test_OTS_database.xlsx', is_trace=True)
    # model = Model.instance('OTS_database.xlsx', is_trace=True)
    model = Model.instance('OTS_database_dup.xlsx', is_trace=True)
    model.is_trace = True
def multi_test(SYMBOL_TO_PREDICT: str):
    params = {
        "architecture": Architecture.GRU.value,
        "is_bidirectional": False,
        "indicators": False,
        "sequence_length": 200,
        "forecast_period": 10,
    }

    tests = [
        # Format:
        # (num_repetitions, {"param to change": new_value})
        (5, {"architecture": Architecture.LSTM.value, "is_bidirectional": False,}),
        (5, {"architecture": Architecture.GRU.value, "is_bidirectional": False,}),
        (5, {"architecture": Architecture.LSTM.value, "is_bidirectional": True,}),
        (5, {"architecture": Architecture.GRU.value, "is_bidirectional": True,}),
        (5, {"indicators": False}),
        (5, {"indicators": True}),
        (1, {"sequence_length": 50}),
        (1, {"sequence_length": 100}),
        (1, {"sequence_length": 150}),
        (1, {"sequence_length": 200}),
        (1, {"sequence_length": 250}),
        (1, {"sequence_length": 300}),
        (1, {"sequence_length": 350}),
        (1, {"sequence_length": 400}),
        (1, {"forecast_period": 1}),
        (1, {"forecast_period": 5}),
        (1, {"forecast_period": 10}),
        (1, {"forecast_period": 20}),
        (1, {"forecast_period": 30}),
        (1, {"forecast_period": 50}),
    ]

    preprocessor = DataPreprocesser(
        f"{os.environ['WORKSPACE']}/data/crypto/{SYMBOL_TO_PREDICT}.parquet",
        col_names=["open", "high", "low", "close", "volume"],
        forecast_col_name="close",
        forecast_period=params["forecast_period"],
        sequence_length=params["sequence_length"],
        should_ask_load=False,
        is_classification=IS_CLASSIFICATION
    )
    preprocessor.preprocess()

    folder = f"{os.environ['WORKSPACE']}/results/tests"
    for test_num, test in enumerate(tests):
        test_num = test_num
        num_repeats = test[0]
        additional_params = test[1]
        new_params = {**params, **additional_params}

        pre = None
        try: pre = preprocessor
        except: pass
        if "sequence_length" in additional_params or "forecast_period" in additional_params or "indicators" in additional_params:
            try:
                del preprocessor
                del pre
            except: pass
            pre = DataPreprocesser(
                f"{os.environ['WORKSPACE']}/data/crypto/{SYMBOL_TO_PREDICT}.parquet",
                col_names=["open", "high", "low", "close", "volume"],
                forecast_col_name="close",
                forecast_period=new_params["forecast_period"],
                sequence_length=new_params["sequence_length"],
                should_ask_load=False,
                is_classification=IS_CLASSIFICATION
            )
            pre.preprocess()
            if new_params["indicators"]:
                indicator_df = get_select_indicator_values(pre.df_original)
                pre.change_data(indicator_df)
                pre.print_df()
                pre.print_df_no_std()

        for i in range(num_repeats):
            create_tf_session()
            print(f"Test {test_num} repeat {i}")
            print("Params")
            print(new_params)

            train_x, train_y = pre.get_train()
            validation_x, validation_y = pre.get_validation()
            model = Model(
                train_x, train_y, validation_x, validation_y,
                pre.get_seq_info_str(),
                architecture=new_params["architecture"],
                is_bidirectional=new_params["is_bidirectional"],
                batch_size=1024,
                hidden_layers=2,
                neurons_per_layer=100,
                dropout=0.2,
                initial_learn_rate=0.001,
                is_classification=IS_CLASSIFICATION
            )
            model.train()

            train_time = float(model.train_time) / 60.0 # In Minutes
            
            file_path = f"{folder}/test{test_num}.csv"

            if not os.path.exists(file_path):
                with open(file_path, 'a') as file:
                    if IS_CLASSIFICATION:
                        file.write("Accuracy,Sparse Categorical Crossentropy,Train Time\n")
                    else:
                        file.write("R Square,MAE,Train Time\n")

            with open(file_path, 'a') as file:
                if IS_CLASSIFICATION:
                    file.write(f"{model.score['accuracy']},{model.score['sparse_categorical_crossentropy']},{train_time}\n")
                else:
                    file.write(f"{model.score['RSquaredMetric']},{model.score['mae']},{train_time}\n")

            ## Cleanup
            del model
            K.clear_session()