def add_sensor_component_feature(self, sliding_window: SlidingWindow,
                                     sensor_component: SensorComponent,
                                     feature: Feature, feature_df: DataFrame):
        self.is_valid_data_set_manager()

        training_data_set = self.workspace_repository.get_training_data_set(
            self.workspace_id)

        assert str(
            sliding_window) in training_data_set.feature_extraction_cache
        assert sensor_component not in training_data_set.feature_extraction_cache[str(
            sliding_window
        )].sensor_component_feature_df_file_IDs or feature not in training_data_set.feature_extraction_cache[
            str(sliding_window
                )].sensor_component_feature_df_file_IDs[sensor_component]

        file_IDs_dict = training_data_set.feature_extraction_cache[str(
            sliding_window)].sensor_component_feature_df_file_IDs
        file_ID = self.file_repository.put_file(
            FeatureExtractionData.serialize_sensor_component_feature_df(
                feature_df))
        if sensor_component in file_IDs_dict.keys():
            file_IDs_dict[sensor_component][feature] = file_ID
        else:
            file_IDs_dict[sensor_component] = {feature: file_ID}
        self.workspace_repository.set_training_data_set(
            self.workspace_id, training_data_set)
    def get_cached_sensor_component_feature(self,
                                            sliding_window: SlidingWindow,
                                            sensor_component: SensorComponent,
                                            feature: Feature) -> DataFrame:
        self.is_valid_data_set_manager()
        training_data_set = self.workspace_repository.get_training_data_set(
            self.workspace_id)

        if str(
                sliding_window
        ) not in training_data_set.feature_extraction_cache or sensor_component not in training_data_set.feature_extraction_cache[
                str(
                    sliding_window
                )].sensor_component_feature_df_file_IDs or feature not in training_data_set.feature_extraction_cache[
                    str(sliding_window)].sensor_component_feature_df_file_IDs[
                        sensor_component]:
            raise RuntimeError(
                "There is no cached feature extraction data with the given sliding window, sensor component and feature"
            )

        file_ID = training_data_set.feature_extraction_cache[str(
            sliding_window
        )].sensor_component_feature_df_file_IDs[sensor_component][feature]
        return FeatureExtractionData.deserialize_sensor_component_feature_df(
            self.file_repository.get_file(file_ID))
Esempio n. 3
0
def get_feature_extraction_data_stub_5_1():
    return FeatureExtractionData(
        data_windows_df_file_ID=ObjectId("60707242b377f2b04ebf6737"),
        labels_of_data_windows_file_ID=ObjectId("6070724cdd135f6e692c0959"),
        sensor_component_feature_df_file_IDs={
            "x_Accelerometer": {
                Feature.MINIMUM: ObjectId("6070727ed1a8cbba14ea120f"),
                Feature.MAXIMUM: ObjectId("6070728ce5eed4a716c39858")
            },
            "y_Accelerometer": {
                Feature.MINIMUM: ObjectId("607072b8c5d9f62dc8af39c5"),
                Feature.MAXIMUM: ObjectId("607072bd0cfbe6257fd2ccaa")
            },
            "z_Accelerometer": {
                Feature.MINIMUM: ObjectId("607072c3c456e5966ed54877"),
                Feature.MAXIMUM: ObjectId("607072c761d523b4852bc4fb")
            },
            "x_Gyroscope": {
                Feature.MINIMUM: ObjectId("607072ccc9439e3d45c48a31"),
                Feature.MAXIMUM: ObjectId("607072d1d7184b370db7a7f0")
            },
            "y_Gyroscope": {
                Feature.MINIMUM: ObjectId("607072d5638d1b75b59e8990"),
                Feature.MAXIMUM: ObjectId("607072dae852a74abbef32ca")
            },
            "z_Gyroscope": {
                Feature.MINIMUM: ObjectId("607072dfcbc9bd19451f0be2"),
                Feature.MAXIMUM: ObjectId("607072e37e4784db534231bf")
            },
        })
Esempio n. 4
0
def get_feature_extraction_data_stub_4_2():
    return FeatureExtractionData(
        data_windows_df_file_ID=ObjectId("6070730112e067c7e6bf65df"),
        labels_of_data_windows_file_ID=ObjectId("6070730644135e99d11e07e3"),
        sensor_component_feature_df_file_IDs={
            "x_Accelerometer": {
                Feature.MEAN: ObjectId("6070730a3cb3407c3cee5088"),
                Feature.MEDIAN: ObjectId("6070730f960d158336e60381")
            },
            "y_Accelerometer": {
                Feature.MEAN: ObjectId("60707313d126b4fc5b5aad21"),
                Feature.MEDIAN: ObjectId("6070731781da40c314d7fa59")
            },
            "z_Accelerometer": {
                Feature.MEAN: ObjectId("6070731c86cd07184cb380ec"),
                Feature.MEDIAN: ObjectId("607073213b96af39b7103af7")
            },
            "x_Gyroscope": {
                Feature.MEAN: ObjectId("60707326750a110c0518ff57"),
                Feature.MEDIAN: ObjectId("6070732a0464a34f7737b1c4")
            },
            "y_Gyroscope": {
                Feature.MEAN: ObjectId("6070732e6c7d7545d2c3a6a5"),
                Feature.MEDIAN: ObjectId("6070733273f8f9217b07af9d")
            },
            "z_Gyroscope": {
                Feature.MEAN: ObjectId("6070733ab4862c8a4ea5591f"),
                Feature.MEDIAN: ObjectId("6070733e37039f4f3f0a2bf1")
            },
        })
    def add_split_to_windows(self, sliding_window: SlidingWindow,
                             data_windows: DataFrame,
                             labels_of_data_windows: List[str]):
        self.is_valid_data_set_manager()
        training_data_set = self.workspace_repository.get_training_data_set(
            self.workspace_id)

        assert str(
            sliding_window) not in training_data_set.feature_extraction_cache

        data_windows_df_file_ID = self.file_repository.put_file(
            FeatureExtractionData.serialize_data_windows_df(data_windows))
        labels_of_data_windows_file_ID = self.file_repository.put_file(
            FeatureExtractionData.serialize_labels_of_data_windows(
                labels_of_data_windows))
        res = FeatureExtractionData(
            data_windows_df_file_ID=data_windows_df_file_ID,
            labels_of_data_windows_file_ID=labels_of_data_windows_file_ID)
        training_data_set.feature_extraction_cache[str(sliding_window)] = res
        self.workspace_repository.set_training_data_set(
            self.workspace_id, training_data_set)
 def get_cached_split_to_windows(
         self, sliding_window: SlidingWindow) -> DataFrame:
     self.is_valid_data_set_manager()
     training_data_set = self.workspace_repository.get_training_data_set(
         self.workspace_id)
     if str(sliding_window
            ) not in training_data_set.feature_extraction_cache:
         raise RuntimeError(
             "There is no cached split to windows with the given sliding window"
         )
     file_ID = training_data_set.feature_extraction_cache[str(
         sliding_window)].data_windows_df_file_ID
     return FeatureExtractionData.deserialize_data_windows_df(
         self.file_repository.get_file(file_ID))