Esempio n. 1
0
 def test_get_rool(self):
     flumodel = FluModel()
     flumodel.name = 'Test Model'
     flumodel.is_public = True
     flumodel.is_displayed = True
     flumodel.source_type = 'google'
     flumodel.calculation_parameters = 'matlab_model,1'
     datapoint = ModelScore()
     datapoint.region = 'e'
     datapoint.score_date = date(2018, 6, 29)
     datapoint.calculation_timestamp = datetime.now()
     datapoint.score_value = 1.23
     datapoint.confidence_interval_lower = 0.81
     datapoint.confidence_interval_upper = 1.65
     flumodel.model_scores = [datapoint]
     model_function = ModelFunction()
     model_function.id = 1
     model_function.function_name = 'matlab_model'
     model_function.average_window_size = 1
     model_function.flu_model_id = 1
     model_function.has_confidence_interval = True
     default_model = DefaultFluModel()
     default_model.flu_model_id = 1
     with self.app.app_context():
         flumodel.save()
         model_function.save()
         DB.session.add(default_model)
         DB.session.commit()
     response = self.client().get('/')
     result = response.get_json()
     expected = {
         'model_list': [{
             'id': 1,
             'name': 'Test Model'
         }],
         'rate_thresholds': {},
         'model_data': [{
             'id':
             1,
             'name':
             'Test Model',
             'average_score':
             1.23,
             'start_date':
             '2018-06-29',
             'end_date':
             '2018-06-29',
             'has_confidence_interval':
             True,
             'data_points': [{
                 'score_date': '2018-06-29',
                 'score_value': 1.23,
                 'confidence_interval_lower': 0.81,
                 'confidence_interval_upper': 1.65
             }]
         }]
     }
     self.assertEqual(result, expected)
     self.assertEqual(response.status_code, 200)
def set_model_score_confidence_interval(
        model_id: int,
        score_date: date,
        score_value: float,
        confidence_interval: Tuple[float, float]
):
    """ Persists a model score entity including its confidence interval """
    model_score = ModelScore()
    model_score.flu_model_id = model_id
    model_score.region = 'e'  # Default for Google data
    model_score.score_date = score_date
    model_score.score_value = score_value
    model_score.confidence_interval_lower = confidence_interval[0]
    model_score.confidence_interval_upper = confidence_interval[1]
    model_score.save()
Esempio n. 3
0
 def test_build_scores_response(self):
     data_points = [{
         'score_date': '2019-01-01',
         'score_value': 0.2,
         'confidence_interval_lower': 0.1,
         'confidence_interval_upper': 0.5
     }, {
         'score_date': '2019-01-02',
         'score_value': 0.4,
         'confidence_interval_lower': 0.1,
         'confidence_interval_upper': 0.5
     }]
     model_data = [{
         'id': 1,
         'name': 'Test Model',
         'start_date': '2019-01-01',
         'end_date': '2019-01-02',
         'average_score': 0.3,
         'has_confidence_interval': True,
         'data_points': data_points
     }]
     expected = {'model_data': model_data}
     flu_model_score_1, flu_model_score_2 = ModelScore(), ModelScore()
     flu_model_score_1.score_date, flu_model_score_2.score_date = date(
         2019, 1, 1), date(2019, 1, 2)
     flu_model_score_1.score_value, flu_model_score_2.score_value = 0.2, 0.4
     flu_model_score_1.confidence_interval_lower, flu_model_score_2.confidence_interval_lower = 0.1, 0.1
     flu_model_score_1.confidence_interval_upper, flu_model_score_2.confidence_interval_upper = 0.5, 0.5
     flu_model_data = [({
         'id': 1,
         'name': 'Test Model',
         'start_date': date(2019, 1, 1),
         'end_date': date(2019, 1, 2),
         'has_confidence_interval': True,
         'average_score': 0.3
     }, [flu_model_score_1, flu_model_score_2])]
     result = build_scores_response(flu_model_data)
     self.assertDictEqual(result, expected)
Esempio n. 4
0
 def test_csv(self):
     flumodel = FluModel()
     flumodel.id = 1
     flumodel.name = 'Test Model'
     flumodel.is_public = True
     flumodel.is_displayed = True
     flumodel.source_type = 'google'
     flumodel.calculation_parameters = 'matlab_model,1'
     dates = [date(2018, 6, d) for d in range(1, 30)]
     datapoints = []
     for d in dates:
         entry = ModelScore()
         entry.region = 'e'
         entry.score_date = d
         entry.calculation_timestamp = datetime.now()
         entry.score_value = 1 + 10 / d.day
         entry.confidence_interval_lower = 0
         entry.confidence_interval_upper = 2
         datapoints.append(entry)
     flumodel.model_scores = datapoints
     model_function = ModelFunction()
     model_function.id = 1
     model_function.function_name = 'matlab_model'
     model_function.average_window_size = 1
     model_function.flu_model_id = 1
     model_function.has_confidence_interval = True
     with self.app.app_context():
         flumodel.save()
         model_function.save()
         response = self.client().get(
             '/csv?id=1&tartDate=2018-06-01&endDate=2018-06-07&resolution=week'
         )
         expected_header = r'attachment; filename=RawScores-\d{13}\.csv'
         expected_data = b'score_date,score_Test Model\r\n2018-06-03,4.333333333333334\r\n'
         self.assertEquals(response.data, expected_data)
         self.assertRegexpMatches(response.headers['Content-Disposition'],
                                  expected_header)
Esempio n. 5
0
 def test_build_root_plink_twlink_response(self):
     model_list = [{
         'id': 1,
         'name': 'Test Model'
     }, {
         'id': 2,
         'name': 'Another Test Model'
     }]
     rate_thresholds = {
         'very_high_value': {
             'label': 'Very high epidemic rate',
             'value': 0.4
         },
         'high_value': {
             'label': 'High epidemic rate',
             'value': 0.3
         },
         'medium_value': {
             'label': 'Medium epidemic rate',
             'value': 0.2
         },
         'low_value': {
             'label': 'Low epidemic rate',
             'value': 0.1
         }
     }
     data_points = [{
         'score_date': '2019-01-01',
         'score_value': 0.2,
         'confidence_interval_lower': 0.1,
         'confidence_interval_upper': 0.5
     }, {
         'score_date': '2019-01-02',
         'score_value': 0.4,
         'confidence_interval_lower': 0.1,
         'confidence_interval_upper': 0.5
     }]
     model_data = [{
         'id': 1,
         'name': 'Test Model',
         'start_date': '2019-01-01',
         'end_date': '2019-01-02',
         'average_score': 0.3,
         'has_confidence_interval': True,
         'data_points': data_points
     }]
     expected = {
         'model_list': model_list,
         'rate_thresholds': rate_thresholds,
         'model_data': model_data
     }
     flu_model_1, flu_model_2 = FluModel(), FluModel()
     flu_model_1.id, flu_model_2.id = 1, 2
     flu_model_1.name, flu_model_2.name = 'Test Model', 'Another Test Model'
     flu_model_list = [flu_model_1, flu_model_2]
     flu_model_score_1, flu_model_score_2 = ModelScore(), ModelScore()
     flu_model_score_1.score_date, flu_model_score_2.score_date = date(
         2019, 1, 1), date(2019, 1, 2)
     flu_model_score_1.score_value, flu_model_score_2.score_value = 0.2, 0.4
     flu_model_score_1.confidence_interval_lower, flu_model_score_2.confidence_interval_lower = 0.1, 0.1
     flu_model_score_1.confidence_interval_upper, flu_model_score_2.confidence_interval_upper = 0.5, 0.5
     flu_model_data = [({
         'id': 1,
         'name': 'Test Model',
         'start_date': date(2019, 1, 1),
         'end_date': date(2019, 1, 2),
         'has_confidence_interval': True,
         'average_score': 0.3
     }, [flu_model_score_1, flu_model_score_2])]
     result = build_root_plink_twlink_response(flu_model_list,
                                               rate_thresholds,
                                               flu_model_data)
     self.assertEquals(result, expected)
Esempio n. 6
0
 def test_get_plink_smoothing(self):
     with self.app.app_context():
         for idx in [1, 2]:
             flumodel = FluModel()
             flumodel.name = 'Test Model %d' % idx
             flumodel.is_public = True
             flumodel.is_displayed = True
             flumodel.source_type = 'google'
             flumodel.calculation_parameters = 'matlab_model,1'
             dates = [date(2018, 6, d) for d in range(1, 30)]
             datapoints = []
             for d in dates:
                 entry = ModelScore()
                 entry.region = 'e'
                 entry.score_date = d
                 entry.calculation_timestamp = datetime.now()
                 entry.score_value = 1.23 / d.day
                 entry.confidence_interval_lower = 0.81
                 entry.confidence_interval_upper = 1.65
                 datapoints.append(entry)
             flumodel.model_scores = datapoints
             model_function = ModelFunction()
             model_function.id = idx
             model_function.function_name = 'matlab_model'
             model_function.average_window_size = 1
             model_function.flu_model_id = idx
             model_function.has_confidence_interval = True
             flumodel.save()
             model_function.save()
         default_model = DefaultFluModel()
         default_model.flu_model_id = 1
         rate_thresholds = RateThresholdSet()
         rate_thresholds.low_value = 0.1
         rate_thresholds.medium_value = 0.2
         rate_thresholds.high_value = 0.3
         rate_thresholds.very_high_value = 0.4
         rate_thresholds.valid_from = date(2010, 1, 1)
         rate_thresholds.save()
         DB.session.add(default_model)
         DB.session.commit()
     response = self.client().get(
         '/plink?id=1&id=2&startDate=2018-06-01&endDate=2018-06-05&smoothing=3'
     )
     self.assertListEqual(response.get_json()['model_list'],
                          [{
                              'id': 1,
                              'name': 'Test Model 1'
                          }, {
                              'id': 2,
                              'name': 'Test Model 2'
                          }])
     self.assertEqual(
         len(response.get_json()['model_data'][0]['data_points']), 5)
     self.assertEqual(
         len(response.get_json()['model_data'][1]['data_points']), 5)
     expected = {
         'low_value': {
             'label': 'Low epidemic rate',
             'value': 0.1
         },
         'medium_value': {
             'label': 'Medium epidemic rate',
             'value': 0.2
         },
         'high_value': {
             'label': 'High epidemic rate',
             'value': 0.3
         },
         'very_high_value': {
             'label': 'Very high epidemic rate',
             'value': 0.4
         }
     }
     self.assertDictEqual(response.get_json()['rate_thresholds'], expected)
     list_expected = [0.252833, 0.321167, 0.444167, 0.751667, 0.922500]
     list_result = [
         round(s['score_value'], 6)
         for s in response.get_json()['model_data'][0]['data_points']
     ]
     self.assertListEqual(list_result, list_expected)
Esempio n. 7
0
 def test_get_twlink_current_link(self):
     flumodel = FluModel()
     flumodel.id = 1
     flumodel.name = 'Test Model'
     flumodel.is_public = True
     flumodel.is_displayed = True
     flumodel.source_type = 'google'
     flumodel.calculation_parameters = 'matlab_model,1'
     flumodel.model_region_id = '1-e'
     dates = [date(2018, 6, d) for d in range(1, 30)]
     datapoints = []
     for d in dates:
         entry = ModelScore()
         entry.region = 'e'
         entry.score_date = d
         entry.calculation_timestamp = datetime.now()
         entry.score_value = 1.23
         entry.confidence_interval_lower = 0.81
         entry.confidence_interval_upper = 1.65
         datapoints.append(entry)
     flumodel.model_scores = datapoints
     model_function = ModelFunction()
     model_function.id = 1
     model_function.function_name = 'matlab_model'
     model_function.average_window_size = 1
     model_function.flu_model_id = 1
     model_function.has_confidence_interval = True
     default_model = DefaultFluModel()
     default_model.flu_model_id = 1
     rate_thresholds = RateThresholdSet()
     rate_thresholds.low_value = 0.1
     rate_thresholds.medium_value = 0.2
     rate_thresholds.high_value = 0.3
     rate_thresholds.very_high_value = 0.4
     rate_thresholds.valid_from = date(2010, 1, 1)
     with self.app.app_context():
         flumodel.save()
         model_function.save()
         rate_thresholds.save()
         DB.session.add(default_model)
         DB.session.commit()
     response = self.client().get(
         '/twlink?id=1&start=2018-06-01&end=2018-06-10')
     self.assertListEqual(response.get_json()['model_list'],
                          [{
                              'id': 1,
                              'name': 'Test Model'
                          }])
     self.assertEqual(
         len(response.get_json()['model_data'][0]['data_points']), 10)
     expected = {
         'low_value': {
             'label': 'Low epidemic rate',
             'value': 0.1
         },
         'medium_value': {
             'label': 'Medium epidemic rate',
             'value': 0.2
         },
         'high_value': {
             'label': 'High epidemic rate',
             'value': 0.3
         },
         'very_high_value': {
             'label': 'Very high epidemic rate',
             'value': 0.4
         }
     }
     self.assertDictEqual(response.get_json()['rate_thresholds'], expected)