def a(N): def psi(x, i): #return sin((i+1)*x) return sin((2 * i + 1) * x) #return sin((2*(i+1))*x) u, c = least_squares_numerical( f, psi, N, x, #integration_method='trapezoidal', integration_method='scipy', orthogonal_basis=True) os.system('rm -f *.png') u_sum = 0 print 'XXX c', c for i in range(N + 1): u_sum = u_sum + c[i] * psi(x, i) plt.plot(x, f(x), '-', x, u_sum, '-', legend=['exact', 'approx'], title='Highest frequency component: sin(%d*x)' % (2 * i + 1), axis=[x[0], x[-1], -1.5, 1.5]) plt.savefig('tmp_frame%04d.png' % i) time.sleep(0.3) cmd = 'avconv -r 2 -i tmp_frame%04d.png -vcodec libtheora movie.ogg'
def a(N): def psi(x, i): #return sin((i+1)*x) return sin((2*i+1)*x) #return sin((2*(i+1))*x) u, c = least_squares_numerical(f, psi, N, x, #integration_method='trapezoidal', integration_method='scipy', orthogonal_basis=True) os.system('rm -f *.png') u_sum = 0 print 'XXX c', c for i in range(N+1): u_sum = u_sum + c[i]*psi(x, i) plt.plot(x, f(x), '-', x, u_sum, '-', legend=['exact', 'approx'], title='Highest frequency component: sin(%d*x)' % (2*i+1), axis=[x[0], x[-1], -1.5, 1.5]) plt.savefig('tmp_frame%04d.png' % i) time.sleep(0.3) cmd = 'avconv -r 2 -i tmp_frame%04d.png -vcodec libtheora movie.ogg'