Esempio n. 1
0
 def test_seed_reset(self):
     spa = SPA(self.benchmark, self.models, reps=10)
     spa.seed(23456)
     initial_state = spa.bootstrap.random_state
     assert_equal(spa.bootstrap._seed, 23456)
     spa.compute()
     spa.reset()
     assert_equal(spa._pvalues, None)
     assert_equal(spa.bootstrap.random_state, initial_state)
Esempio n. 2
0
 def test_seed_reset(self):
     spa = SPA(self.benchmark, self.models, reps=10)
     spa.seed(23456)
     initial_state = spa.bootstrap.random_state
     assert_equal(spa.bootstrap._seed, 23456)
     spa.compute()
     spa.reset()
     assert_equal(spa._pvalues, None)
     assert_equal(spa.bootstrap.random_state, initial_state)
Esempio n. 3
0
    def test_variances_and_selection(self):
        adj_models = self.models + linspace(-2, 0.5, self.k)
        spa = SPA(self.benchmark, adj_models, block_size=10, reps=10)
        spa.seed(23456)
        spa.compute()
        variances = spa._loss_diff_var
        loss_diffs = spa._loss_diff
        demeaned = spa._loss_diff - loss_diffs.mean(0)
        t = loss_diffs.shape[0]
        kernel_weights = np.zeros(t)
        p = 1 / 10.0
        for i in range(1, t):
            kernel_weights[i] = ((1.0 - (i / t)) * ((1 - p) ** i)) + \
                                ((i / t) * ((1 - p) ** (t - i)))
        direct_vars = (demeaned**2).sum(0) / t
        for i in range(1, t):
            direct_vars += 2 * kernel_weights[i] * \
                           (demeaned[:t - i, :] * demeaned[i:, :]).sum(0) / t
        assert_allclose(direct_vars, variances)

        selection_criteria = -1.0 * np.sqrt(
            (direct_vars / t) * 2 * np.log(np.log(t)))
        valid = loss_diffs.mean(0) >= selection_criteria
        assert_equal(valid, spa._valid_columns)

        # Bootstrap variances
        spa = SPA(self.benchmark,
                  self.models,
                  block_size=10,
                  reps=100,
                  nested=True)
        spa.seed(23456)
        spa.compute()
        spa.reset()
        bs = spa.bootstrap.clone(demeaned)
        variances = spa._loss_diff_var
        bootstrap_variances = t * bs.var(
            lambda x: x.mean(0), reps=100, recenter=True)
        assert_allclose(bootstrap_variances, variances)
Esempio n. 4
0
    def test_variances_and_selection(self):
        adj_models = self.models + linspace(-2, 0.5, self.k)
        spa = SPA(self.benchmark, adj_models, block_size=10, reps=10)
        spa.seed(23456)
        spa.compute()
        variances = spa._loss_diff_var
        loss_diffs = spa._loss_diff
        demeaned = spa._loss_diff - loss_diffs.mean(0)
        t = loss_diffs.shape[0]
        kernel_weights = np.zeros(t)
        p = 1 / 10.0
        for i in range(1, t):
            kernel_weights[i] = ((1.0 - (i / t)) * ((1 - p) ** i)) + \
                                ((i / t) * ((1 - p) ** (t - i)))
        direct_vars = (demeaned ** 2).sum(0) / t
        for i in range(1, t):
            direct_vars += 2 * kernel_weights[i] * \
                           (demeaned[:t - i, :] * demeaned[i:, :]).sum(0) / t
        assert_allclose(direct_vars, variances)

        selection_criteria = -1.0 * np.sqrt((direct_vars / t) * 2 *
                                            np.log(np.log(t)))
        valid = loss_diffs.mean(0) >= selection_criteria
        assert_equal(valid, spa._valid_columns)

        # Bootstrap variances
        spa = SPA(self.benchmark, self.models, block_size=10, reps=100,
                  nested=True)
        spa.seed(23456)
        spa.compute()
        spa.reset()
        bs = spa.bootstrap.clone(demeaned)
        variances = spa._loss_diff_var
        bootstrap_variances = t * bs.var(lambda x: x.mean(0), reps=100,
                                         recenter=True)
        assert_allclose(bootstrap_variances, variances)