def handler(event, context):
    dataset_name = 's3'
    bucket_name = "s3-10"
    num_workers = 10
    tmp_bucket = "tmp-params"
    merged_bucket = "merged-params"

    clear_bucket(tmp_bucket)
    clear_bucket(merged_bucket)

    # invoke functions
    payload = dict()
    payload['dataset'] = dataset_name
    payload['bucket_name'] = bucket_name
    payload['num_workers'] = num_workers
    payload['tmp_bucket'] = tmp_bucket
    payload['merged_bucket'] = merged_bucket

    # invoke functions
    lambda_client = boto3.client('lambda')
    for i in range(num_workers):
        payload['rank'] = i
        payload['file'] = '{}_{}'.format(i, num_workers)
        lambda_client.invoke(FunctionName='LR_higgs',
                             InvocationType='Event',
                             Payload=json.dumps(payload))
def handler(event, context):
    dataset_name = 's3'
    bucket_name = "s3-libsvm"
    num_workers = 10
    num_buckets = 1
    tmp_bucket_prefix = "tmp-params"
    merged_bucket_prefix = "merged-params"

    for i in range(num_buckets):
        clear_bucket("{}-{}".format(tmp_bucket_prefix, i))
        clear_bucket("{}-{}".format(merged_bucket_prefix, i))

    # invoke functions
    payload = dict()
    payload['dataset'] = dataset_name
    payload['bucket_name'] = bucket_name
    payload['num_workers'] = num_workers
    payload['num_buckets'] = num_buckets
    payload['tmp_bucket_prefix'] = tmp_bucket_prefix
    payload['merged_bucket_prefix'] = merged_bucket_prefix

    # invoke functions
    lambda_client = boto3.client('lambda')
    for i in range(num_workers):
        payload['rank'] = i
        payload['file'] = '{}_{}'.format(i, num_workers)
        lambda_client.invoke(FunctionName='LR_higgs_multibucket', InvocationType='Event', Payload=json.dumps(payload))
Esempio n. 3
0
def handler(event, context):
    dataset_name = 'yfcc100m'
    bucket_name = "yfcc100m-400"
    num_workers = 10
    tmp_bucket = "tmp-params"
    merged_bucket = "merged-params"
    num_epochs = 10
    num_admm_epochs = 10
    learning_rate = 0.1
    batch_size = 500
    lam = 0.01
    rho = 0.01
    num_classes = 2
    num_features = 4096
    pos_tag = "animal"
    files_per_worker = 4

    clear_bucket(tmp_bucket)
    clear_bucket(merged_bucket)

    # invoke functions
    payload = dict()
    payload['dataset'] = dataset_name
    payload['bucket_name'] = bucket_name
    payload['num_workers'] = num_workers
    payload['tmp_bucket'] = tmp_bucket
    payload['merged_bucket'] = merged_bucket
    payload['num_epochs'] = num_epochs
    payload['num_admm_epochs'] = num_admm_epochs
    payload['learning_rate'] = learning_rate
    payload['batch_size'] = batch_size
    payload['lambda'] = lam
    payload['rho'] = rho
    payload['num_classes'] = num_classes
    payload['num_features'] = num_features
    payload['pos_tag'] = pos_tag

    # invoke functions
    lambda_client = boto3.client('lambda')
    for i in range(num_workers):
        payload['rank'] = i
        start_file_index = i * files_per_worker
        payload['file'] = ",".join(range(start_file_index + files_per_worker))
        lambda_client.invoke(FunctionName='LR_higgs',
                             InvocationType='Event',
                             Payload=json.dumps(payload))
Esempio n. 4
0
def handler(event, context):
    dataset_name = 's3'
    bucket_name = "s3-10"
    num_workers = 10
    tmp_bucket = "tmp-params"
    merged_bucket = "merged-params"
    num_epochs = 10
    num_admm_epochs = 10
    learning_rate = 0.1
    batch_size = 10000
    lam = 0.01
    rho = 0.01
    num_classes = 2
    num_features = 30

    clear_bucket(tmp_bucket)
    clear_bucket(merged_bucket)

    # invoke functions
    payload = dict()
    payload['dataset'] = dataset_name
    payload['bucket_name'] = bucket_name
    payload['num_workers'] = num_workers
    payload['tmp_bucket'] = tmp_bucket
    payload['merged_bucket'] = merged_bucket
    payload['num_epochs'] = num_epochs
    payload['num_admm_epochs'] = num_admm_epochs
    payload['learning_rate'] = learning_rate
    payload['batch_size'] = batch_size
    payload['lambda'] = lam
    payload['rho'] = rho
    payload['num_classes'] = num_classes
    payload['num_features'] = num_features

    # invoke functions
    lambda_client = boto3.client('lambda')
    for i in range(num_workers):
        payload['rank'] = i
        payload['file'] = '{}_{}'.format(i, num_workers)
        lambda_client.invoke(FunctionName='LR_higgs',
                             InvocationType='Event',
                             Payload=json.dumps(payload))
Esempio n. 5
0
def main(event, context):

    storage = event['storage']
    if storage == "memcache":
        from archived.elasticache.Memcached import memcached_init
        from archived.elasticache.Memcached.clear_all import clear_all

        memcache_location = event['elasticache']
        endpoint = memcached_init(redis_location)

        clear_all(endpoint)
    if storage == "redis":
        from archived.elasticache import redis_init
        from archived.sync import clear_bucket

        redis_location = event['elasticache']
        grad_bucket = event['grad_bucket']
        model_bucket = event['model_bucket']
        endpoint = redis_init(redis_location)

        clear_bucket(endpoint,grad_bucket)
        clear_bucket(endpoint,model_bucket)
Esempio n. 6
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    merged_bucket = event['merged_bucket']
    num_epochs = event['num_epochs']
    num_admm_epochs = event['num_admm_epochs']
    learning_rate = event['learning_rate']
    lam = event['lambda']
    rho = event['rho']
    batch_size = event['batch_size']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('merge bucket = {}'.format(merged_bucket))
    print('num epochs = {}'.format(num_epochs))
    print('num admm epochs = {}'.format(num_admm_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("lambda = {}".format(lam))
    print("rho = {}".format(rho))
    print("batch_size = {}".format(batch_size))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))
    # file_path = "../../dataset/agaricus_127d_train.libsvm"
    # file = open(file_path).readlines()

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)

    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)
    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}".format(
        time.time() - preprocess_start, dataset_size))

    model = LogisticRegression(num_features, num_classes).double()
    print("size of w = {}".format(model.linear.weight.data.size()))

    z, u = initialize_z_and_u(model.linear.weight.data.size())
    print("size of z = {}".format(z.shape))
    print("size of u = {}".format(u.shape))

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    stop = False
    for admm_epoch in range(num_admm_epochs):
        print("ADMM Epoch >>> {}".format(admm_epoch))
        for epoch in range(num_epochs):
            epoch_start = time.time()
            epoch_loss = 0
            for batch_index, (items, labels) in enumerate(train_loader):
                #   print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
                batch_start = time.time()
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)

                # Forward + Backward + Optimize
                optimizer.zero_grad()
                outputs = model(items.double())
                classify_loss = criterion(outputs, labels)
                epoch_loss += classify_loss.data
                u_z = torch.from_numpy(u).double() - torch.from_numpy(
                    z).double()
                loss = classify_loss
                for name, param in model.named_parameters():
                    if name.split('.')[-1] == "weight":
                        loss += rho / 2.0 * torch.norm(param + u_z, p=2)
                #loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z))
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()

            # Test the Model
            test_start = time.time()
            correct = 0
            total = 0
            test_loss = 0
            for items, labels in validation_loader:
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)
                outputs = model(items.double())
                test_loss += criterion(outputs, labels).data
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            test_time = time.time() - test_start

            print(
                'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
                'batch cost %.4f s: test cost %.4f s, '
                'accuracy of the model on the %d test samples: %d %%, loss = %f'
                % (epoch + 1, num_epochs, batch_index + 1,
                   len(train_indices) / batch_size, time.time() - train_start,
                   epoch_loss.data, time.time() - epoch_start,
                   time.time() - batch_start, test_time, len(val_indices),
                   100 * correct / total, test_loss / total))

        w = model.linear.weight.data.numpy()
        w_shape = w.shape
        b = model.linear.bias.data.numpy()
        b_shape = b.shape
        u_shape = u.shape

        w_and_b = np.concatenate((w.flatten(), b.flatten()))
        u_w_b = np.concatenate((u.flatten(), w_and_b.flatten()))
        cal_time = time.time() - epoch_start
        print("Epoch {} calculation cost = {} s".format(epoch, cal_time))

        sync_start = time.time()
        postfix = str(admm_epoch)
        u_w_b_merge = reduce_epoch(endpoint, u_w_b, merged_bucket, num_workers,
                                   worker_index, postfix)

        u_mean = u_w_b_merge[:u_shape[0] *
                             u_shape[1]].reshape(u_shape) / float(num_workers)
        w_mean = u_w_b_merge[u_shape[0] * u_shape[1]:u_shape[0] * u_shape[1] +
                             w_shape[0] *
                             w_shape[1]].reshape(w_shape) / float(num_workers)
        b_mean = u_w_b_merge[u_shape[0] * u_shape[1] +
                             w_shape[0] * w_shape[1]:].reshape(
                                 b_shape[0]) / float(num_workers)
        # model.linear.weight.data = torch.from_numpy(w)
        model.linear.bias.data = torch.from_numpy(b_mean)
        sync_time = time.time() - sync_start
        print("Epoch {} synchronization cost {} s".format(epoch, sync_time))

        #z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam)
        #stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho)
        #print("stop = {}".format(stop))

        #z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean)
        z = update_z(w_mean, u_mean, rho, num_workers, lam)
        #print(z)
        u = u + model.linear.weight.data.numpy() - z
        #print(u)

    # Test the Model
    correct = 0
    total = 0
    test_loss = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        labels = Variable(labels)
        outputs = model(items.double())
        test_loss += criterion(outputs, labels).data
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print(
        'Epoch: %d, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
        % (epoch, time.time() - train_start, len(val_indices),
           100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(endpoint)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file']
    merged_bucket = event['merged_bucket']
    num_classes = event['num_classes']
    num_features = event['num_features']
    pos_tag = event['pos_tag']
    num_epochs = event['num_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('merged bucket = {}'.format(merged_bucket))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('num epochs = {}'.format(num_epochs))
    print('learning rate = {}'.format(learning_rate))
    print("batch size = {}".format(batch_size))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    dataset = DenseLibsvmDataset(file, num_features, pos_tag)

    totol_count = dataset.__len__()
    pos_count = 0
    for i in range(totol_count):
        if dataset.__getitem__(i)[1] == 1:
            pos_count += 1
    print("{} positive observations out of {}".format(pos_count, totol_count))

    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = SVM(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    for epoch in range(num_epochs):
        epoch_start = time.time()
        epoch_loss = 0
        cal_time = 0
        sync_time = 0
        for batch_index, (items, labels) in enumerate(train_loader):
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            epoch_loss += loss.data
            loss.backward()

            w_grad = model.linear.weight.grad.data.numpy()
            w_grad_shape = w_grad.shape
            b_grad = model.linear.bias.grad.data.numpy()
            b_grad_shape = b_grad.shape

            w_b_grad = np.concatenate((w_grad.flatten(), b_grad.flatten()))
            cal_time += time.time() - batch_start

            sync_start = time.time()
            postfix = "{}_{}".format(epoch, batch_index)
            w_b_grad_merge = reduce_batch(endpoint, w_b_grad, merged_bucket,
                                          num_workers, worker_index, postfix)
            w_grad_merge = \
                w_b_grad_merge[:w_grad_shape[0] * w_grad_shape[1]].reshape(w_grad_shape) / float(num_workers)
            b_grad_merge = \
                w_b_grad_merge[w_grad_shape[0] * w_grad_shape[1]:].reshape(b_grad_shape[0]) / float(num_workers)

            model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
            model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            sync_time += time.time() - sync_start

            optimizer.step()

            # print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, '
            #       'batch cost %.4f s: cal cost %.4f s communication cost %.4f s, '
            #       % (epoch + 1, num_epochs, batch_index, len(train_indices) / batch_size,
            #          time.time() - train_start, loss.data, time.time() - epoch_start,
            #          time.time() - batch_start, cal_time, sync_time))

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += criterion(outputs, labels).data
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        test_time = time.time() - test_start

        print(
            'Epoch %d has %d batches, time = %.4f, epoch cost %.4f s: '
            'computation cost %.4f s communication cost %.4f s, '
            'train loss = %.4f, test cost %.4f s, accuracy of the model on the %d test samples: %d %%, loss = %f'
            % (epoch, batch_index, time.time() - train_start, time.time() -
               epoch_start, cal_time, sync_time, epoch_loss, test_time,
               len(val_indices), 100 * correct / total, test_loss / total))

    if worker_index == 0:
        clear_bucket(endpoint)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
Esempio n. 8
0
def handler(event, context):
    try:
        start_time = time.time()
        bucket_name = event['bucket_name']
        worker_index = event['rank']
        num_workers = event['num_workers']
        key = event['file']
        merged_bucket = event['merged_bucket']
        num_features = event['num_features']
        learning_rate = event["learning_rate"]
        batch_size = event["batch_size"]
        num_epochs = event["num_epochs"]
        validation_ratio = event["validation_ratio"]
        elasti_location = event['elasticache']
        endpoint = memcached_init(elasti_location)

        # read file from s3
        file = get_object(bucket_name, key).read().decode('utf-8').split("\n")
        print("read data cost {} s".format(time.time() - start_time))

        parse_start = time.time()
        dataset = SparseDatasetWithLines(file, num_features)
        print("parse data cost {} s".format(time.time() - parse_start))

        preprocess_start = time.time()
        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(validation_ratio * dataset_size))
        if shuffle_dataset:
            np.random.seed(random_seed)
            np.random.shuffle(indices)
        train_indices, val_indices = indices[split:], indices[:split]

        train_set = [dataset[i] for i in train_indices]
        val_set = [dataset[i] for i in val_indices]

        print("preprocess data cost {} s".format(time.time() -
                                                 preprocess_start))
        lr = LogisticRegression(train_set, val_set, num_features, num_epochs,
                                learning_rate, batch_size)

        # Training the Model
        train_start = time.time()
        for epoch in range(num_epochs):
            epoch_start = time.time()
            num_batches = math.floor(len(train_set) / batch_size)
            print(f"worker {worker_index} epoch {epoch}")
            for batch_idx in range(num_batches):
                batch_start = time.time()
                batch_ins, batch_label = lr.next_batch(batch_idx)
                batch_grad = torch.zeros(lr.n_input, 1, requires_grad=False)
                batch_bias = np.float(0)
                train_loss = Loss()
                train_acc = Accuracy()

                for i in range(len(batch_ins)):
                    z = lr.forward(batch_ins[i])
                    h = lr.sigmoid(z)
                    loss = lr.loss(h, batch_label[i])
                    #print("z= {}, h= {}, loss = {}".format(z, h, loss))
                    train_loss.update(loss, 1)
                    train_acc.update(h, batch_label[i])
                    g = lr.backward(batch_ins[i], h.item(), batch_label[i])
                    batch_grad.add_(g)
                    batch_bias += np.sum(h.item() - batch_label[i])
                batch_grad = batch_grad.div(len(batch_ins))
                batch_bias = batch_bias / len(batch_ins)
                batch_grad.mul_(-1.0 * learning_rate)
                lr.grad.add_(batch_grad)
                lr.bias = lr.bias - batch_bias * learning_rate

                sync_start = time.time()
                np_grad = lr.grad.numpy().flatten()
                np_bias = np.array(lr.bias, dtype=np_grad.dtype)
                w_and_b = np.concatenate((np_grad, np_bias))
                postfix = "{}_{}".format(epoch, batch_idx)
                w_b_merge = reduce_batch(endpoint, w_and_b, merged_bucket,
                                         num_workers, worker_index, postfix)
                lr.grad, lr.bias = w_b_merge[:-1].reshape(num_features, 1) / float(num_workers), \
                                   float(w_b_merge[-1]) / float(num_workers)
                sync_time = time.time() - sync_start
                print("synchronization cost {}s, batch takes {}s".format(
                    sync_time,
                    time.time() - batch_start))

                if (batch_idx + 1) % 10 == 0:
                    print("Epoch: {}/{}, Step: {}/{}, Loss: {}".format(
                        epoch + 1, num_epochs, batch_idx + 1, num_batches,
                        train_loss))

            cal_time = time.time() - epoch_start
            test_start = time.time()
            val_loss, val_acc = lr.evaluate()
            test_time = time.time() - test_start

            print(
                'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %s, Accuracy: %s, epoch cost %.4f, '
                'cal cost %.4f s, sync cost %.4f s, test cost %.4f s, '
                'test accuracy: %s %%, test loss: %s' %
                (epoch + 1, num_epochs, batch_idx + 1,
                 num_batches, time.time() - train_start, train_loss, train_acc,
                 time.time() - epoch_start, cal_time, sync_time, test_time,
                 val_acc, val_loss))

        if worker_index == 0:
            clear_bucket(endpoint)
        print("elapsed time = {} s".format(time.time() - start_time))

    except Exception as e:
        print("Error {}".format(e))
Esempio n. 9
0
def handler(event, context):
    start_time = time.time()
    bucket = event['bucket_name']
    worker_index = event['rank']
    num_workers = event['num_workers']
    key = event['file'].split(",")
    merged_bucket = event['merged_bucket']
    num_classes = event['num_classes']
    num_features = event['num_features']
    pos_tag = event['pos_tag']
    num_epochs = event['num_epochs']
    num_admm_epochs = event['num_admm_epochs']
    learning_rate = event['learning_rate']
    batch_size = event['batch_size']
    lam = event['lambda']
    rho = event['rho']
    elasti_location = event['elasticache']
    endpoint = memcached_init(elasti_location)

    print('bucket = {}'.format(bucket))
    print("file = {}".format(key))
    print('number of workers = {}'.format(num_workers))
    print('worker index = {}'.format(worker_index))
    print('merge bucket = {}'.format(merged_bucket))
    print('num epochs = {}'.format(num_epochs))
    print('num admm epochs = {}'.format(num_admm_epochs))
    print('num classes = {}'.format(num_classes))
    print('num features = {}'.format(num_features))
    print('positive tag = {}'.format(pos_tag))
    print('learning rate = {}'.format(learning_rate))
    print("batch_size = {}".format(batch_size))
    print("lambda = {}".format(lam))
    print("rho = {}".format(rho))

    # read file from s3
    file = get_object(bucket, key[0]).read().decode('utf-8').split("\n")
    dataset = DenseLibsvmDataset(file, num_features, pos_tag)
    if len(key) > 1:
        for more_key in key[1:]:
            file = get_object(bucket,
                              more_key).read().decode('utf-8').split("\n")
            dataset.add_more(file)
    print("read data cost {} s".format(time.time() - start_time))

    parse_start = time.time()
    total_count = dataset.__len__()
    pos_count = 0
    for i in range(total_count):
        if dataset.__getitem__(i)[1] == 1:
            pos_count += 1
    print("{} positive observations out of {}".format(pos_count, total_count))

    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)

    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s, dataset size = {}".format(
        time.time() - preprocess_start, dataset_size))

    model = SVM(num_features, num_classes).float()
    print("size of w = {}".format(model.linear.weight.data.size()))

    z, u = initialize_z_and_u(model.linear.weight.data.size())
    print("size of z = {}".format(z.shape))
    print("size of u = {}".format(u.shape))

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    train_start = time.time()
    stop = False
    for admm_epoch in range(num_admm_epochs):
        admm_epoch_start = time.time()
        for epoch in range(num_epochs):
            epoch_start = time.time()
            epoch_loss = 0
            for batch_index, (items, labels) in enumerate(train_loader):
                batch_start = time.time()
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)

                # Forward + Backward + Optimize
                optimizer.zero_grad()
                outputs = model(items)

                classify_loss = torch.mean(
                    torch.clamp(1 - outputs.t() * labels.float(),
                                min=0))  # hinge loss
                epoch_loss += classify_loss

                u_z = torch.from_numpy(u).float() - torch.from_numpy(z).float()
                loss = classify_loss
                for name, param in model.named_parameters():
                    if name.split('.')[-1] == "weight":
                        loss += rho / 2.0 * torch.norm(param + u_z, p=2)
                #loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z))
                optimizer.zero_grad()
                loss.backward(retain_graph=True)
                optimizer.step()

            # Test the Model
            test_start = time.time()
            correct = 0
            total = 0
            test_loss = 0
            for items, labels in validation_loader:
                items = Variable(items.view(-1, num_features))
                labels = Variable(labels)
                outputs = model(items)
                test_loss += torch.mean(
                    torch.clamp(1 - outputs.t() * labels.float(), min=0))
                _, predicted = torch.max(outputs.data, 1)
                total += labels.size(0)
                correct += (predicted == labels).sum()
            test_time = time.time() - test_start

            print(
                'ADMM Epoch: [%d/%d], Epoch: [%d/%d], Batch [%d], '
                'Time: %.4f, Loss: %.4f, epoch cost %.4f, test cost %.4f s, '
                'accuracy of the model on the %d test samples: %d %%, loss = %f'
                % (admm_epoch, num_admm_epochs, epoch, num_epochs, batch_index,
                   time.time() - train_start,
                   epoch_loss.data, time.time() - epoch_start, test_time,
                   len(val_indices), 100 * correct / total, test_loss / total))

        w = model.linear.weight.data.numpy()
        w_shape = w.shape
        b = model.linear.bias.data.numpy()
        b_shape = b.shape
        u_shape = u.shape

        w_and_b = np.concatenate((w.flatten(), b.flatten()))
        u_w_b = np.concatenate((u.flatten(), w_and_b.flatten()))
        cal_time = time.time() - epoch_start

        sync_start = time.time()
        postfix = "{}".format(admm_epoch)
        u_w_b_merge = reduce_epoch(endpoint, u_w_b, merged_bucket, num_workers,
                                   worker_index, postfix)

        u_mean = u_w_b_merge[:u_shape[0] *
                             u_shape[1]].reshape(u_shape) / float(num_workers)
        w_mean = u_w_b_merge[u_shape[0] * u_shape[1]:u_shape[0] * u_shape[1] +
                             w_shape[0] *
                             w_shape[1]].reshape(w_shape) / float(num_workers)
        b_mean = u_w_b_merge[u_shape[0] * u_shape[1] +
                             w_shape[0] * w_shape[1]:].reshape(
                                 b_shape[0]) / float(num_workers)
        #model.linear.weight.data = torch.from_numpy(w)
        model.linear.bias.data = torch.from_numpy(b_mean).float()
        sync_time = time.time() - sync_start

        #z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam)
        #stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho)
        #print("stop = {}".format(stop))

        #z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean)
        z = update_z(w_mean, u_mean, rho, num_workers, lam)
        #print(z)
        u = u + model.linear.weight.data.numpy() - z
        #print(u)

        # Test the Model
        test_start = time.time()
        correct = 0
        total = 0
        test_loss = 0
        for items, labels in validation_loader:
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)
            outputs = model(items)
            test_loss += torch.mean(
                torch.clamp(1 - outputs.t() * labels.float(), min=0))
            _, predicted = torch.max(outputs.data, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum()
        test_time = time.time() - test_start

        print(
            'ADMM Epoch: [%d/%d], Time: %.4f, Loss: %.4f, '
            'ADMM epoch cost %.4f: computation cost %.4f s communication cost %.4f s test cost %.4f s, '
            'accuracy of the model on the %d test samples: %d %%, loss = %f' %
            (admm_epoch,
             num_admm_epochs, time.time() - train_start, epoch_loss.data,
             time.time() - admm_epoch_start, cal_time, sync_time, test_time,
             len(val_indices), 100 * correct / total, test_loss / total))

    # Test the Model
    correct = 0
    total = 0
    test_loss = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        labels = Variable(labels)
        outputs = model(items)
        test_loss += torch.mean(
            torch.clamp(1 - outputs.t() * labels.float(), min=0))
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print(
        'Time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f'
        % (time.time() - train_start, len(val_indices), 100 * correct / total,
           test_loss / total))

    if worker_index == 0:
        clear_bucket(endpoint)

    end_time = time.time()
    print("Elapsed time = {} s".format(end_time - start_time))
Esempio n. 10
0
def handler(event, context):
    try:
        start_time = time.time()
        bucket_name = event['bucket_name']
        worker_index = event['rank']
        num_workers = event['num_workers']
        key = event['file']
        merged_bucket = event['merged_bucket']
        num_features = event['num_features']
        learning_rate = event["learning_rate"]
        batch_size = event["batch_size"]
        num_epochs = event["num_epochs"]
        validation_ratio = event["validation_ratio"]
        elasti_location = event['elasticache']
        endpoint = memcached_init(elasti_location)

        # Reading data from S3
        print(f"Reading training data from bucket = {bucket_name}, key = {key}")
        file = get_object(bucket_name, key).read().decode('utf-8').split("\n")
        print("read data cost {} s".format(time.time() - start_time))

        parse_start = time.time()
        dataset = SparseDatasetWithLines(file, num_features)
        print("parse data cost {} s".format(time.time() - parse_start))

        preprocess_start = time.time()
        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(validation_ratio * dataset_size))
        if shuffle_dataset:
            np.random.seed(random_seed)
            np.random.shuffle(indices)
        train_indices, val_indices = indices[split:], indices[:split]

        train_set = [dataset[i] for i in train_indices]
        val_set = [dataset[i] for i in val_indices]

        print("preprocess data cost {} s".format(time.time() - preprocess_start))
        svm = SparseSVM(train_set, val_set, num_features, num_epochs, learning_rate, batch_size)

        # Training the Model
        train_start = time.time()
        for epoch in range(num_epochs):
            epoch_start = time.time()
            num_batches = math.floor(len(train_set) / batch_size)
            print("worker {} epoch {}".format(worker_index, epoch))
            for batch_idx in range(num_batches):
                batch_start = time.time()
                batch_ins, batch_label = svm.next_batch(batch_idx)
                acc = svm.one_epoch(batch_idx, epoch)
                if (batch_idx + 1) % 10 == 0:
                    print("Epoch: {}/{}, Step: {}/{}, train acc: {}"
                          .format(epoch + 1, num_epochs, batch_idx + 1, num_batches, acc))
            cal_time = time.time() - epoch_start

            sync_start = time.time()
            np_w = svm.weights.numpy().flatten()
            postfix = str(epoch)
            w_merge = reduce_epoch(endpoint, np_w, merged_bucket, num_workers, worker_index, postfix)
            svm.weights = torch.from_numpy(w_merge).reshape(num_features, 1)
            sync_time = time.time() - sync_start

            test_start = time.time()
            val_acc = svm.evaluate()
            test_time = time.time() - test_start

            print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, epoch cost %.4f, '
                  'cal cost %.4f s, sync cost %.4f s, test cost %.4f s, test accuracy: %s %%'
                  % (epoch + 1, num_epochs, batch_idx + 1, num_batches,
                     time.time() - train_start, time.time() - epoch_start,
                     cal_time, sync_time, test_time, val_acc))

        if worker_index == 0:
            clear_bucket(endpoint)
        print("elapsed time = {} s".format(time.time() - start_time))

    except Exception as e:
        print("Error {}".format(e))
Esempio n. 11
0
def handler(event, context):
    startTs = time.time()
    bucket = event['Records'][0]['s3']['bucket']['name']
    key = urllib.parse.unquote_plus(event['Records'][0]['s3']['object']['key'], encoding='utf-8')

    print('bucket = {}'.format(bucket))
    print('key = {}'.format(key))

    key_splits = key.split("_")
    worker_index = int(key_splits[0])
    num_worker = int(key_splits[1])
    sync_meta = SyncMeta(worker_index, num_worker)
    print("synchronization meta {}".format(sync_meta.__str__()))

    # read file from s3
    file = get_object(bucket, key).read().decode('utf-8').split("\n")
    print("read data cost {} s".format(time.time() - startTs))

    parse_start = time.time()
    dataset = DenseDatasetWithLines(file, num_features)
    print("parse data cost {} s".format(time.time() - parse_start))

    preprocess_start = time.time()
    # Creating data indices for training and validation splits:
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(validation_ratio * dataset_size))
    if shuffle_dataset:
        np.random.seed(random_seed)
        np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]

    # Creating PT data samplers and loaders:
    train_sampler = SubsetRandomSampler(train_indices)
    valid_sampler = SubsetRandomSampler(val_indices)

    train_loader = torch.utils.data.DataLoader(dataset,
                                               batch_size=batch_size,
                                               sampler=train_sampler)
    validation_loader = torch.utils.data.DataLoader(dataset,
                                                    batch_size=batch_size,
                                                    sampler=valid_sampler)

    print("preprocess data cost {} s".format(time.time() - preprocess_start))

    model = LogisticRegression(num_features, num_classes)

    # Loss and Optimizer
    # Softmax is internally computed.
    # Set parameters to be updated.
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

    # Training the Model
    for epoch in range(num_epochs):
        for batch_index, (items, labels) in enumerate(train_loader):
            print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index))
            batch_start = time.time()
            items = Variable(items.view(-1, num_features))
            labels = Variable(labels)

            # Forward + Backward + Optimize
            optimizer.zero_grad()
            outputs = model(items)
            loss = criterion(outputs, labels)
            loss.backward()

            print("forward and backward cost {} s".format(time.time()-batch_start))

            w_grad = model.linear.weight.grad.data.numpy()
            b_grad = model.linear.bias.grad.data.numpy()
            #print("dtype of grad = {}".format(w_grad.dtype))
            print("w_grad before merge = {}".format(w_grad[0][0:5]))
            print("b_grad before merge = {}".format(b_grad))

            sync_start = time.time()
            put_object(grad_bucket, w_grad_prefix + str(worker_index), w_grad.tobytes())
            put_object(grad_bucket, b_grad_prefix + str(worker_index), b_grad.tobytes())

            file_postfix = "{}_{}".format(epoch, batch_index)
            if worker_index == 0:
                w_grad_merge, b_grad_merge = \
                    merge_w_b_grads(grad_bucket, num_worker, w_grad.dtype,
                                    w_grad.shape, b_grad.shape,
                                    w_grad_prefix, b_grad_prefix)
                put_merged_w_b_grad(model_bucket, w_grad_merge, b_grad_merge,
                                    file_postfix, w_grad_prefix, b_grad_prefix)
                delete_expired_w_b(model_bucket, epoch, batch_index, w_grad_prefix, b_grad_prefix)
                model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))
            else:
                w_grad_merge, b_grad_merge = get_merged_w_b_grad(model_bucket, file_postfix,
                                                                 w_grad.dtype, w_grad.shape, b_grad.shape,
                                                                 w_grad_prefix, b_grad_prefix)
                model.linear.weight.grad = Variable(torch.from_numpy(w_grad_merge))
                model.linear.bias.grad = Variable(torch.from_numpy(b_grad_merge))

            print("w_grad after merge = {}".format(model.linear.weight.grad.data.numpy()[0][:5]))
            print("b_grad after merge = {}".format(model.linear.bias.grad.data.numpy()))

            print("synchronization cost {} s".format(time.time() - sync_start))

            optimizer.step()

            print("batch cost {} s".format(time.time() - batch_start))

            if (batch_index + 1) % 10 == 0:
                print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f'
                      % (epoch + 1, num_epochs, batch_index + 1, len(train_indices) / batch_size, loss.data))

    if worker_index == 0:
        clear_bucket(model_bucket)
        clear_bucket(grad_bucket)

    # Test the Model
    correct = 0
    total = 0
    for items, labels in validation_loader:
        items = Variable(items.view(-1, num_features))
        # items = Variable(items)
        outputs = model(items)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

    print('Accuracy of the model on the %d test samples: %d %%' % (len(val_indices), 100 * correct / total))

    endTs = time.time()
    print("elapsed time = {} s".format(endTs - startTs))