def genericFilter(self,**kwargs): try: x = kwargs['name'] x = x.split(',') if len(x[0])== 0: pass for p in [self.path]: uc = UpdateCursor(p) for row in uc: fn = row.getValue('FULL_NAME') for j in x: if j in fn: fn = fn.replace(j,'') row.setValue('FULL_NAME', fn) uc.updateRow(row) del uc except: print "Error in %s." % sys._getframe().f_code.co_name e = sys.exc_info() log_file = open("H:/Programming/PyErrorLog.txt", 'a') log_file.write(str(datetime.datetime.now().time()) + "\n") log_file.write(str(e[0]) + "\n") log_file.write(str(e[1]) + "\n") traceback.print_tb(e[2],None,log_file) log_file.write('\n') log_file.close()
def fc_cleanup(self): import arcpy num=1 sort_fc = '/'.join([x.path,x.name+'_sort'+num]) while arcpy.Exists(sort_fc) == True: num += 1 sort_fc = sort_fc.replace(sort_fc[-1],num) arcpy.Sort_management(x.path+'/'+x.name,x.path+'/'+x.name+'_sort',[["UFI","ASCENDING"]]) uc = UpdateCursor(sort_fc) ufi = -1 row = uc.next() feat_dict = {} lst_unis = [] for row in uc: last_ufi,ufi = ufi,row.getValue('UFI') nt = row.getValue('NT') if ufi == last_ufi and nt in ('V',u'V'): uni = row.getValue('UNI') lst_unis.append(row.getValue('UNI')) else: feat_dict[ufi] = lst_unis lst_unis = [] uc.updateRow(row) row = uc.next() del uc num += 1 uc2 = UpdateCursor(sort_fc) row = uc.next() for row in uc2: ufi = row.getValue('UFI') uni = row.getValue('UNI') if ufi in feat_dict: lst_unis = feat_dict[ufi] if uni in lst_unis: uc2.deleteRow(row)
def all_values_in_column(table, column): """ Returns a set of all the values in the some column of a table |table|: a dbf |column|: the name of a column in the table, the column must be in the table """ values = set() rows = UpdateCursor(table) for row in rows: values.add(row.getValue(column)) return values
def compute_adjacency_list(input_points, input_network, id_attribute, impedance_attribute, accumulator_attributes, search_radius, output_location, adj_dbf_name): """ |input_points|: point shape file marking entity (e.g. building) locations |input_network|: street network in which |input_points| is located |id_attribute|: the name of attribute that distinguishes between input points |impedance_attribute|: distance between neighboring nodes will be based on this attribute |accumulator_attributes|: distance between neighboring nodes will also be recorded for these attributes |search_radius|: the maximum extent for centrality computation |output_location|: adjacency list dbf will be saved here |adj_dbf_name|: the name of the adjacency list dbf """ # Number of points in |input_points| input_point_count = int(GetCount_management(input_points).getOutput(0)) # Make a directory to store all auxiliary files auxiliary_dir = join(output_location, AUXILIARY_DIR_NAME) if not Exists(auxiliary_dir): mkdir(auxiliary_dir) # Record the edge and junction source names of |input_network| junction_feature, edge_feature = network_features(input_network) # Calculate network locations if not already calculated test_input_point = UpdateCursor(input_points).next() locations_calculated = all( row_has_field(test_input_point, field) for field in NETWORK_LOCATION_FIELDS) if not locations_calculated: calculate_network_locations(input_points, input_network) # Calculate barrier cost per input point if not already calculated barrier_costs_calculated = row_has_field(test_input_point, trim(BARRIER_COST_FIELD)) if not barrier_costs_calculated: AddMessage(BARRIER_COST_COMPUTATION_STARTED) # Add |BARRIER_COST_FIELD| column in |input_points| AddField_management(in_table=input_points, field_name=trim(BARRIER_COST_FIELD), field_type="DOUBLE", field_is_nullable="NON_NULLABLE") # Initialize a dictionary to store the frequencies of (SnapX, SnapY) values xy_count = {} # A method to retrieve a (SnapX, SnapY) pair for a row in |input_points| get_xy = lambda row: (row.getValue(trim("SnapX")), row.getValue(trim("SnapY"))) barrier_pre_progress = Progress_Bar(input_point_count, 1, BARRIER_COST_PRE_PROCESSING) rows = UpdateCursor(input_points) for row in rows: snap_xy = get_xy(row) if snap_xy in xy_count: xy_count[snap_xy] += 1 else: xy_count[snap_xy] = 1 barrier_pre_progress.step() # Populate |BARRIER_COST_FIELD|, this will be used in OD matrix computation barrier_progress = Progress_Bar(input_point_count, 1, BARRIER_COST_COMPUTATION) rows = UpdateCursor(input_points) for row in rows: barrier_cost = BARRIER_COST / xy_count[get_xy(row)] row.setValue(trim(BARRIER_COST_FIELD), barrier_cost) rows.updateRow(row) barrier_progress.step() AddMessage(BARRIER_COST_COMPUTATION_FINISHED) # Necessary files od_cost_matrix_layer = join(auxiliary_dir, OD_COST_MATRIX_LAYER_NAME) od_cost_matrix_lines = join(od_cost_matrix_layer, OD_COST_MATRIX_LINES) temp_adj_dbf_name = TEMP_ADJACENCY_DBF_NAME(adj_dbf_name) temp_adj_dbf = join(output_location, temp_adj_dbf_name) adj_dbf = join(output_location, adj_dbf_name) partial_adj_dbf = join(auxiliary_dir, PARTIAL_ADJACENCY_LIST_NAME) polygons = join(auxiliary_dir, POLYGONS_SHAPEFILE_NAME) raster = join(auxiliary_dir, RASTER_NAME) polygons_layer = join(auxiliary_dir, POLYGONS_LAYER_NAME) input_points_layer = join(auxiliary_dir, INPUT_POINTS_LAYER_NAME) # Make sure none of these files already exists for path in [ od_cost_matrix_layer, temp_adj_dbf, adj_dbf, partial_adj_dbf, polygons, raster, polygons_layer, input_points_layer, od_cost_matrix_lines ]: delete(path) # Cutoff radius for OD matrix computation cutoff_radius = 2 * BARRIER_COST + min(search_radius, BARRIER_COST / 2) # Compute OD matrix MakeODCostMatrixLayer_na(in_network_dataset=input_network, out_network_analysis_layer=od_cost_matrix_layer, impedance_attribute=impedance_attribute, default_cutoff=str(cutoff_radius), accumulate_attribute_name=accumulator_attributes, UTurn_policy="ALLOW_UTURNS", hierarchy="NO_HIERARCHY", output_path_shape="NO_LINES") # Determine raster cell size points_per_raster_cell = OD_MATRIX_ENTRIES / input_point_count raster_cell_count = max(1, input_point_count / points_per_raster_cell) input_points_extent = Describe(input_points).Extent raster_cell_area = (input_points_extent.width * input_points_extent.height / raster_cell_count) raster_cell_size = int(sqrt(raster_cell_area)) # Construct |raster| from |input_points| PointToRaster_conversion(in_features=input_points, value_field=id_attribute, out_rasterdataset=raster, cell_assignment="MOST_FREQUENT", priority_field="NONE", cellsize=str(raster_cell_size)) # Construct |polygons| from |raster| RasterToPolygon_conversion(in_raster=raster, out_polygon_features=polygons, simplify="NO_SIMPLIFY", raster_field="VALUE") # Export empty |od_cost_matrix_lines| to |temp_dbf| to start adjacency list TableToTable_conversion(in_rows=od_cost_matrix_lines, out_path=output_location, out_name=temp_adj_dbf_name) # Construct |polygons_layer| and |input_points_layer| for (feature, layer) in [(polygons, polygons_layer), (input_points, input_points_layer)]: MakeFeatureLayer_management(in_features=feature, out_layer=layer) def add_locations(sub_layer, field_mappings=""): """ |sub_layer|: one of "Origins", "Destinations", "Barrier Points" |field_mappings|: field mappings in addition to those for "Name" and "CurbApproach" """ AddLocations_na(in_network_analysis_layer=od_cost_matrix_layer, sub_layer=sub_layer, in_table=input_points_layer, field_mappings=("Name %s #; CurbApproach # 0; %s" % (id_attribute, field_mappings)), search_tolerance=SEARCH_TOLERANCE, search_criteria=("%s SHAPE; %s SHAPE;" % (junction_feature, edge_feature)), append="CLEAR", snap_to_position_along_network="SNAP", snap_offset=SNAP_OFFSET) # OD cost matrix destinations AddMessage(ADDING_DESTINATIONS_STARTED) SelectLayerByLocation_management(in_layer=input_points_layer) add_locations("Destinations") AddMessage(ADDING_DESTINATIONS_FINISHED) # OD cost matrix point barriers AddMessage(ADDING_BARRIERS_STARTED) add_locations("Point Barriers", ("FullEdge # 0; BarrierType # 2;" "Attr_%s %s #;" % (impedance_attribute, trim(BARRIER_COST_FIELD)))) AddMessage(ADDING_BARRIERS_FINISHED) # Compute adjacency list, one raster cell at a time progress = Progress_Bar(raster_cell_count, 1, STEP_1) rows = UpdateCursor(polygons) for row in rows: # Select the current polygon SelectLayerByAttribute_management(in_layer_or_view=polygons_layer, selection_type="NEW_SELECTION", where_clause="FID = %s" % str(row.FID)) # Origins SelectLayerByLocation_management(in_layer=input_points_layer, select_features=polygons_layer) add_locations("Origins") # Solve OD Cost matrix Solve_na(in_network_analysis_layer=od_cost_matrix_layer, ignore_invalids="SKIP") # Add origin and destination fields to the adjacency list dbf for (index, field) in [(0, ORIGIN_ID_FIELD_NAME), (1, DESTINATION_ID_FIELD_NAME)]: CalculateField_management(in_table=od_cost_matrix_lines, field=field, expression="!Name!.split(' - ')[%d]" % index, expression_type="PYTHON") # Record actual distance between neighboring nodes distance_field = "Total_%s" % impedance_attribute CalculateField_management(in_table=od_cost_matrix_lines, field=distance_field, expression="!%s! - 2 * %d" % (distance_field, BARRIER_COST), expression_type="PYTHON") # Append result to |temp_adj_dbf| TableToTable_conversion(in_rows=od_cost_matrix_lines, out_path=auxiliary_dir, out_name=PARTIAL_ADJACENCY_LIST_NAME) Append_management(inputs=partial_adj_dbf, target=temp_adj_dbf, schema_type="TEST") progress.step() # Copy data from |temp_adj_dbf| to |adj_dbf| Rename_management(in_data=temp_adj_dbf, out_data=adj_dbf) # Clean up for path in [ od_cost_matrix_layer, partial_adj_dbf, polygons, raster, polygons_layer, input_points_layer, auxiliary_dir ]: delete(path)
def updateFC(self): ''' Updates the feature class based on the distances found in the other two functions input: lstNames - 'b' from the LevDist function ''' try: d0 = time.clock() z = self.LevDist(self.namePairs) dupeCount = 0 modCount = 0 ctr = 0 self.insGNDB = [] while z: # n = varFlag,gUFI,gName,xUFI,xName,gUNI n = z.next() # cursor must apply to external names feature class; else will throw exception # as fields such as "MF" do not exist uc = UpdateCursor(self.path+'/'+self.name) gUFI = n[1] gN = n[2] xUFI = n[3] xN = n[4] gUNI = n[5] # initialize an empty list to put GNDB row objects for records to be demoted # from N to V NT for row in uc: try: uni = 1 # print row.getValue('FULL_NAME'), xN uc_name = row.getValue('FULL_NAME') uc_ufi = row.getValue('UFI') if uc_name == xN and uc_ufi == xUFI: if n[0] == 'DUPLICATE': dupeCount += 1 row.setValue('GEONAME_NOTE',n[0]) # set MF column to M to capture coordinates # or other feature mods row.setValue('MF','M') ################## # # need to change this with new sources row.setValue('USID1','TU-GAZETTEER-09') # ################## row.setValue('SOURCE_MOD_TYPE1','F') row.setValue('UFI', gUFI) row.setValue('UNI', gUNI) uc.updateRow(row) ctr += 1 # if exName is duplicate of GNDB Variant, find and # demote GNDB N name if n[6] == 'V': rr = self.demote_gndb_rec(n[1],gUNI) elif n[0] == 'VARIANT': # Turkey Gazetteer is considered authoritative # so discrepancies favor the gazetteer # handles the external record vRow = self.handle_variants(n,row) uc.updateRow(vRow) # demote the GNDB NT to 'V' rr = self.demote_gndb_rec(n[1], gUNI) # = gndb row self.insGNDB.append(rr) modCount +=1 ctr +=1 print n[1] except StopIteration: print 'uc done' except StopIteration: print "ctr = %d" % ctr print "Feature class modified:\n\t%d duplicate features found \ \n\t%d variant names added" % (dupeCount,modCount) d1 = time.clock() delta = d1-d0 print "%s took %f to complete." % (sys._getframe().f_code.co_name,\ delta) ins_cur = InsertCursor(self.path+'/'+self.name) ins_num = 0 for rec in self.insGNDB: if rec == None: continue pt = Point() row = ins_cur.newRow() for k,d in rec.iteritems(): row.setValue(k,d) row.setValue('MF','M') row.setValue('NT','V') if k == 'LON': pt.X = d elif k == 'LAT': pt.Y = d row.setNull('NAME_RANK') row.setValue('SOURCE_MOD_TYPE1','N') pt_geo = PointGeometry(pt) row.setValue('Shape',pt_geo) ins_cur.insertRow(row) ins_num += 1 print "%d GNDB name records demoted and added to feature class." % \ ins_num del ins_cur except Exception, e: e = sys.exc_info() log_file = open("H:/Programming/PyErrorLog.txt", 'a') log_file.write(str(datetime.datetime.now().time()) + "\n") log_file.write(str(e[0]) + "\n") log_file.write(str(e[1]) + "\n") traceback.print_tb(e[2],None,log_file) log_file.write('\n') log_file.close()
test_node = nodes[selected_features.pop()] measures = set([measure for measure in dir(test_node) if (measure in FINAL_ATTRIBUTES or is_accumulator_field(measure))]) # Add a field in the output layer for each computed metric for measure in measures: AddField_management(in_table=output_layer, field_name=trim(measure), field_type="DOUBLE", field_is_nullable="NON_NULLABLE") # Figure out the id field to use based on the type of the input buildings if (buildings_description.shapeType == "Polygon" and inputs[ID_ATTRIBUTE] == ORIGINAL_FID): id_field = "FID" else: id_field = inputs[ID_ATTRIBUTE] # Fill the layer with the metric values write_progress = Progress_Bar(N, 1, STEP_5) layer_rows = UpdateCursor(output_layer) for row in layer_rows: id = row.getValue(id_field) for measure in measures: # If no value was computed for this node id, set value to 0 value = 0 if id in nodes and hasattr(nodes[id], measure): value = getattr(nodes[id], measure) row.setValue(trim(measure), value) layer_rows.updateRow(row) write_progress.step() AddMessage(STEP_5_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_5_FAILED) success = False
def compute_adjacency_list(input_points, input_network, id_attribute, impedance_attribute, accumulator_attributes, search_radius, output_location, adj_dbf_name): """ |input_points|: point shape file marking entity (e.g. building) locations |input_network|: street network in which |input_points| is located |id_attribute|: the name of attribute that distinguishes between input points |impedance_attribute|: distance between neighboring nodes will be based on this attribute |accumulator_attributes|: distance between neighboring nodes will also be recorded for these attributes |search_radius|: the maximum extent for centrality computation |output_location|: adjacency list dbf will be saved here |adj_dbf_name|: the name of the adjacency list dbf """ # Number of points in |input_points| input_point_count = int(GetCount_management(input_points).getOutput(0)) # Make a directory to store all auxiliary files auxiliary_dir = join(output_location, AUXILIARY_DIR_NAME) if not Exists(auxiliary_dir): mkdir(auxiliary_dir) # Record the edge and junction source names of |input_network| edge_feature = None junction_feature = None for source in Describe(input_network).sources: if source.sourceType == EDGE_FEATURE: edge_feature = source.name elif source.sourceType in JUNCTION_FEATURE: junction_feature = source.name if edge_feature == None: AddWarning(WARNING_NO_EDGE_FEATURE(input_network)) raise Invalid_Input_Exception("Input Network") if junction_feature == None: AddWarning(WARNING_NO_JUNCTION_FEATURE(input_network)) raise Invalid_Input_Exception("Input Network") # Calculate network locations if not already calculated test_input_point = UpdateCursor(input_points).next() locations_calculated = all(row_has_field(test_input_point, field) for field in NETWORK_LOCATION_FIELDS) if not locations_calculated: AddMessage(CALCULATE_LOCATIONS_STARTED) CalculateLocations_na(in_point_features=input_points, in_network_dataset=input_network, search_tolerance=SEARCH_TOLERANCE, search_criteria=("%s SHAPE; %s SHAPE;" % (junction_feature, edge_feature)), exclude_restricted_elements="INCLUDE") AddMessage(CALCULATE_LOCATIONS_FINISHED) # Calculate barrier cost per input point if not already calculated barrier_costs_calculated = row_has_field(test_input_point, trim(BARRIER_COST_FIELD)) if not barrier_costs_calculated: AddMessage(BARRIER_COST_COMPUTATION_STARTED) # Add |BARRIER_COST_FIELD| column in |input_points| AddField_management(in_table=input_points, field_name=trim(BARRIER_COST_FIELD), field_type="DOUBLE", field_is_nullable="NON_NULLABLE") # Initialize a dictionary to store the frequencies of (SnapX, SnapY) values xy_count = {} # A method to retrieve a (SnapX, SnapY) pair for a row in |input_points| get_xy = lambda row: (row.getValue(trim("SnapX")), row.getValue(trim("SnapY"))) barrier_pre_progress = Progress_Bar(input_point_count, 1, BARRIER_COST_PRE_PROCESSING) rows = UpdateCursor(input_points) for row in rows: snap_xy = get_xy(row) if snap_xy in xy_count: xy_count[snap_xy] += 1 else: xy_count[snap_xy] = 1 barrier_pre_progress.step() # Populate |BARRIER_COST_FIELD|, this will be used in OD matrix computation barrier_progress = Progress_Bar(input_point_count, 1, BARRIER_COST_COMPUTATION) rows = UpdateCursor(input_points) for row in rows: barrier_cost = BARRIER_COST / xy_count[get_xy(row)] row.setValue(trim(BARRIER_COST_FIELD), barrier_cost) rows.updateRow(row) barrier_progress.step() AddMessage(BARRIER_COST_COMPUTATION_FINISHED) # Necessary files od_cost_matrix_layer = join(auxiliary_dir, OD_COST_MATRIX_LAYER_NAME) od_cost_matrix_lines = join(od_cost_matrix_layer, OD_COST_MATRIX_LINES) temp_adj_dbf_name = "%s~.dbf" % adj_dbf_name[:-4] temp_adj_dbf = join(output_location, temp_adj_dbf_name) adj_dbf = join(output_location, adj_dbf_name) partial_adj_dbf = join(auxiliary_dir, PARTIAL_ADJACENCY_LIST_NAME) polygons = join(auxiliary_dir, POLYGONS_SHAPEFILE_NAME) raster = join(auxiliary_dir, RASTER_NAME) polygons_layer = join(auxiliary_dir, POLYGONS_LAYER_NAME) input_points_layer = join(auxiliary_dir, INPUT_POINTS_LAYER_NAME) # Make sure none of these files already exists for path in [od_cost_matrix_layer, temp_adj_dbf, adj_dbf, partial_adj_dbf, polygons, raster, polygons_layer, input_points_layer, od_cost_matrix_lines]: delete(path) # Cutoff radius for OD matrix computation cutoff_radius = 2 * BARRIER_COST + min(search_radius, BARRIER_COST / 2) # Compute OD matrix MakeODCostMatrixLayer_na(in_network_dataset=input_network, out_network_analysis_layer=od_cost_matrix_layer, impedance_attribute=impedance_attribute, default_cutoff=str(cutoff_radius), accumulate_attribute_name=accumulator_attributes, UTurn_policy="ALLOW_UTURNS", hierarchy="NO_HIERARCHY", output_path_shape="NO_LINES") # Determine raster cell size points_per_raster_cell = OD_MATRIX_ENTRIES / input_point_count raster_cell_count = max(1, input_point_count / points_per_raster_cell) input_points_extent = Describe(input_points).Extent raster_cell_area = (input_points_extent.width * input_points_extent.height / raster_cell_count) raster_cell_size = int(sqrt(raster_cell_area)) # Construct |raster| from |input_points| PointToRaster_conversion(in_features=input_points, value_field=id_attribute, out_rasterdataset=raster, cell_assignment="MOST_FREQUENT", priority_field="NONE", cellsize=str(raster_cell_size)) # Construct |polygons| from |raster| RasterToPolygon_conversion(in_raster=raster, out_polygon_features=polygons, simplify="NO_SIMPLIFY", raster_field="VALUE") # Export empty |od_cost_matrix_lines| to |temp_dbf| to start adjacency list TableToTable_conversion(in_rows=od_cost_matrix_lines, out_path=output_location, out_name=temp_adj_dbf_name) # Construct |polygons_layer| and |input_points_layer| for (feature, layer) in [(polygons, polygons_layer), (input_points, input_points_layer)]: MakeFeatureLayer_management(in_features=feature, out_layer=layer) def add_locations(sub_layer, field_mappings=""): """ |sub_layer|: one of "Origins", "Destinations", "Barrier Points" |field_mappings|: field mappings in addition to those for "Name" and "CurbApproach" """ AddLocations_na(in_network_analysis_layer=od_cost_matrix_layer, sub_layer=sub_layer, in_table=input_points_layer, field_mappings=("Name %s #; CurbApproach # 0; %s" % (id_attribute, field_mappings)), search_tolerance=SEARCH_TOLERANCE, search_criteria=("%s SHAPE; %s SHAPE;" % (junction_feature, edge_feature)), append="CLEAR", snap_to_position_along_network="SNAP", snap_offset=SNAP_OFFSET) # OD cost matrix destinations AddMessage(ADDING_DESTINATIONS_STARTED) SelectLayerByLocation_management(in_layer=input_points_layer) add_locations("Destinations") AddMessage(ADDING_DESTINATIONS_FINISHED) # OD cost matrix point barriers AddMessage(ADDING_BARRIERS_STARTED) add_locations("Point Barriers", ("FullEdge # 0; BarrierType # 2;" "Attr_%s %s #;" % (impedance_attribute, trim(BARRIER_COST_FIELD)))) AddMessage(ADDING_BARRIERS_FINISHED) # Compute adjacency list, one raster cell at a time progress = Progress_Bar(raster_cell_count, 1, STEP_1) rows = UpdateCursor(polygons) for row in rows: # Select the current polygon SelectLayerByAttribute_management(in_layer_or_view=polygons_layer, selection_type="NEW_SELECTION", where_clause="FID = %s" % str(row.FID)) # Origins SelectLayerByLocation_management(in_layer=input_points_layer, select_features=polygons_layer) add_locations("Origins") # Solve OD Cost matrix Solve_na(in_network_analysis_layer=od_cost_matrix_layer, ignore_invalids="SKIP") # Add origin and destination fields to the adjacency list dbf for (index, field) in [(0, ORIGIN_ID_FIELD_NAME), (1, DESTINATION_ID_FIELD_NAME)]: CalculateField_management(in_table=od_cost_matrix_lines, field=field, expression="!Name!.split(' - ')[%d]" % index, expression_type="PYTHON") # Record actual distance between neighboring nodes distance_field = "Total_%s" % impedance_attribute CalculateField_management(in_table=od_cost_matrix_lines, field=distance_field, expression="!%s! - 2 * %d" % (distance_field, BARRIER_COST), expression_type="PYTHON") # Append result to |temp_adj_dbf| TableToTable_conversion(in_rows=od_cost_matrix_lines, out_path=auxiliary_dir, out_name=PARTIAL_ADJACENCY_LIST_NAME) Append_management(inputs=partial_adj_dbf, target=temp_adj_dbf, schema_type="TEST") progress.step() # Copy data from |temp_adj_dbf| to |adj_dbf| Rename_management(in_data=temp_adj_dbf, out_data=adj_dbf) # Clean up for path in [od_cost_matrix_layer, partial_adj_dbf, polygons, raster, polygons_layer, input_points_layer, auxiliary_dir]: delete(path)
# Mame a feature layer of type amenities MakeFeatureLayer_management(osmPoints, nameAmenitiesLayer, queryStringAmenities) # Select only amanities into the country El Salvador SelectLayerByLocation_management(nameAmenitiesLayer, "CONTAINED_BY", nameCountryLayer) # Makes a separate shapefile for each types of amenities CopyFeatures_management(nameAmenitiesLayer, typeAmenities) # Get the new separete shapefile amenitiesTable = typeAmenities + '.dbf' # Name of new field for amenities newField = "source" # Add new field called 'source' AddField_management(amenitiesTable, newField, "TEXT", 100) with UpdateCursor(typeAmenities + ".shp", newField) as amenitiesRows: for row in amenitiesRows: # Update the value for each row in typeAmenities row[0] = "OpenStreetMap" amenitiesRows.updateRow(row) except: print 'It was not possible makes a separete shapefile for amenities'
success = False # Step 2 if success: AddMessage(STEP_2_STARTED) try: distance_field = trim("Total_%s" % inputs[IMPEDANCE_ATTRIBUTE]) accumulator_fields = set([trim("Total_%s" % accumulator_attribute) for accumulator_attribute in inputs[ACCUMULATOR_ATTRIBUTES].split(";") if accumulator_attribute != "#"]) # Graph representation: dictionary mapping node id's to Node objects nodes = {} # The number of rows in |adj_dbf| directed_edge_count = int(GetCount_management(adj_dbf).getOutput(0)) graph_progress = Progress_Bar(directed_edge_count, 1, STEP_2) rows = UpdateCursor(adj_dbf) for row in rows: # Get neighboring nodes, and the distance between them origin_id = row.getValue(trim(ORIGIN_ID_FIELD_NAME)) destination_id = row.getValue(trim(DESTINATION_ID_FIELD_NAME)) distance = float(row.getValue(distance_field)) # Make sure the nodes are recorded in the graph for id in [origin_id, destination_id]: if not id in nodes: nodes[id] = Node() # Make sure that the nodes are neighbors in the graph if origin_id != destination_id and distance >= 0: accumulations = {} for field in accumulator_fields: accumulations[field] = float(row.getValue(field)) nodes[origin_id].add_neighbor(destination_id, distance, accumulations)
def main(): """ Runs the centrality tool. """ env.overwriteOutput = True # Enable overwritting CheckOutExtension("Network") # Success of the program through the six steps success = True # Inputs to the tool if len(argv) != INPUT_COUNT + 1: raise Exception("Invalid number of inputs") input_number = index() input_number.next() # Skip over sys.argv[0] inputs = {} inputs[INPUT_BUILDINGS] = argv[input_number.next()] inputs[POINT_LOCATION] = ("INSIDE" if argv[input_number.next()] == "true" else "CENTROID") inputs[INPUT_NETWORK] = argv[input_number.next()] inputs[COMPUTE_REACH] = argv[input_number.next()] == "true" inputs[COMPUTE_GRAVITY] = argv[input_number.next()] == "true" inputs[COMPUTE_BETWEENNESS] = argv[input_number.next()] == "true" inputs[COMPUTE_CLOSENESS] = argv[input_number.next()] == "true" inputs[COMPUTE_STRAIGHTNESS] = argv[input_number.next()] == "true" inputs[ID_ATTRIBUTE] = argv[input_number.next()] inputs[NODE_WEIGHT_ATTRIBUTE] = argv[input_number.next()] inputs[IMPEDANCE_ATTRIBUTE] = argv[input_number.next()] try: inputs[SEARCH_RADIUS] = float(argv[input_number.next()]) except: inputs[SEARCH_RADIUS] = INFINITE_RADIUS inputs[USE_NETWORK_RADIUS] = (argv[input_number.next()] == ON_THE_NETWORK_OPTION) try: inputs[BETA] = float(argv[input_number.next()]) except: raise Invalid_Input_Exception("Beta") inputs[NORMALIZE_RESULTS] = [measure for measure in argv[input_number.next()].split(";") if measure != "#"] inputs[OUTPUT_LOCATION] = argv[input_number.next()] inputs[OUTPUT_FILE_NAME] = argv[input_number.next()] inputs[ACCUMULATOR_ATTRIBUTES] = argv[input_number.next()] # Record the origin nodes for centrality measurements # This is important if the user selects a subset of the features to be origins selected_features = all_values_in_column(inputs[INPUT_BUILDINGS], inputs[ID_ATTRIBUTE]) # Clear selection if we got a layer file try: SelectLayerByAttribute_management(inputs[INPUT_BUILDINGS], "CLEAR_SELECTION") except: pass # Adjacency List table name node_locations_needed = (inputs[COMPUTE_STRAIGHTNESS] or not inputs[USE_NETWORK_RADIUS]) adj_dbf_name = ("%s_%s_%s_%s_%s_%s.dbf" % (ADJACENCY_LIST_NAME, basename(inputs[INPUT_BUILDINGS]), basename(inputs[INPUT_NETWORK]), inputs[ID_ATTRIBUTE], inputs[IMPEDANCE_ATTRIBUTE], inputs[ACCUMULATOR_ATTRIBUTES])).replace("#", "None") if len(adj_dbf_name) > MAX_FILE_NAME_LENGTH: AddWarning(WARNING_LARGE_ADJ_FILE_NAME) adj_dbf = join(inputs[OUTPUT_LOCATION], adj_dbf_name) # Output file names output_feature_class_name = feature_class_name(inputs[OUTPUT_FILE_NAME]) output_feature_class = "%s.shp" % join(inputs[OUTPUT_LOCATION], output_feature_class_name) # Create a feature class that is a copy of the input buildings try: AddMessage(INPUT_BUILDINGS_COPY_STARTED) CreateFeatureclass_management(out_path=inputs[OUTPUT_LOCATION], out_name=output_feature_class_name) CopyFeatures_management(in_features=inputs[INPUT_BUILDINGS], out_feature_class=output_feature_class) AddMessage(INPUT_BUILDINGS_COPY_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(INPUT_BUILDINGS_COPY_FAILED) success = False output_layer_name = layer_name(inputs[OUTPUT_FILE_NAME]) output_layer = "%s.lyr" % join(inputs[OUTPUT_LOCATION], output_layer_name) # If output has already been created, don't carry on if Exists(output_layer): AddWarning(WARNING_OUTPUT_ALREADY_EXISTS) success = False # We will convert polygon input buildings to point feature class buildings_description = Describe(output_feature_class) if buildings_description.shapeType == "Point": # Input buildings are already a point shape file inputs[INPUT_POINTS] = output_feature_class elif buildings_description.shapeType == "Polygon": # Input buildings need to be converted to point feature class point_feature_class_name = POINT_FEATURE_CLASS_NAME( basename(output_feature_class), inputs[POINT_LOCATION]) inputs[INPUT_POINTS] = "%s.shp" % join(inputs[OUTPUT_LOCATION], point_feature_class_name) # If FID is used as ID attribute, we need to change it since a point # shapefile will be in use if inputs[ID_ATTRIBUTE] == "FID": inputs[ID_ATTRIBUTE] = ORIGINAL_FID else: # Input buildings need to be either points or polygons raise Invalid_Input_Exception("Input Buildings") # Find the appropriate symbology layer for metric_index in range(len(METRICS)): if inputs[COMPUTE_REACH + metric_index]: first_metric = METRICS[metric_index] break symbology_layer_name = get_symbology_layer_name( buildings_description.shapeType, first_metric) symbology_layer = join(SYMBOLOGY_DIR, symbology_layer_name) def clean_up(): """ Removes all auxiliary files """ auxiliary_dir = join(inputs[OUTPUT_LOCATION], AUXILIARY_DIR_NAME) od_cost_matrix_layer = join(auxiliary_dir, OD_COST_MATRIX_LAYER_NAME) od_cost_matrix_lines = join(auxiliary_dir, OD_COST_MATRIX_LINES) temp_adj_dbf_name = "%s~.dbf" % adj_dbf_name[-4] temp_adj_dbf = join(inputs[OUTPUT_LOCATION], temp_adj_dbf_name) partial_adj_dbf = join(auxiliary_dir, PARTIAL_ADJACENCY_LIST_NAME) polygons = join(auxiliary_dir, POLYGONS_SHAPEFILE_NAME) raster = join(auxiliary_dir, RASTER_NAME) polygons_layer = join(auxiliary_dir, POLYGONS_LAYER_NAME) input_points_layer = join(auxiliary_dir, INPUT_POINTS_LAYER_NAME) for delete_path in [input_points_layer, polygons_layer, raster, polygons, partial_adj_dbf, temp_adj_dbf, od_cost_matrix_lines, od_cost_matrix_layer, auxiliary_dir]: delete(delete_path) try: """ Here we carry out the six steps of the tool """ # Step 1 if success: AddMessage(STEP_1_STARTED) # If necessary, convert input buildings to point feature class if buildings_description.shapeType == "Polygon": AddMessage(POINT_CONVERSION_STARTED) to_point_feature_class(output_feature_class, inputs[INPUT_POINTS], inputs[POINT_LOCATION]) AddMessage(POINT_CONVERSION_FINISHED) if Exists(adj_dbf): AddMessage(ADJACENCY_LIST_COMPUTED) if node_locations_needed: calculate_network_locations(inputs[INPUT_POINTS], inputs[INPUT_NETWORK]) AddMessage(STEP_1_FINISHED) else: try: compute_adjacency_list(inputs[INPUT_POINTS], inputs[INPUT_NETWORK], inputs[ID_ATTRIBUTE], inputs[IMPEDANCE_ATTRIBUTE], inputs[ACCUMULATOR_ATTRIBUTES], inputs[SEARCH_RADIUS], inputs[OUTPUT_LOCATION], adj_dbf_name) AddMessage(STEP_1_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_1_FAILED) success = False # Step 2 if success: AddMessage(STEP_2_STARTED) try: distance_field = trim("Total_%s" % inputs[IMPEDANCE_ATTRIBUTE]) accumulator_fields = set([trim("Total_%s" % accumulator_attribute) for accumulator_attribute in inputs[ACCUMULATOR_ATTRIBUTES].split( ";") if accumulator_attribute != "#"]) # Graph representation: dictionary mapping node id's to Node objects nodes = {} # The number of rows in |adj_dbf| directed_edge_count = int(GetCount_management(adj_dbf).getOutput(0)) graph_progress = Progress_Bar(directed_edge_count, 1, STEP_2) rows = UpdateCursor(adj_dbf) for row in rows: # Get neighboring nodes, and the distance between them origin_id = row.getValue(trim(ORIGIN_ID_FIELD_NAME)) destination_id = row.getValue(trim(DESTINATION_ID_FIELD_NAME)) distance = float(row.getValue(distance_field)) # Make sure the nodes are recorded in the graph for id in [origin_id, destination_id]: if not id in nodes: nodes[id] = Node() # Make sure that the nodes are neighbors in the graph if origin_id != destination_id and distance >= 0: accumulations = {} for field in accumulator_fields: accumulations[field] = float(row.getValue(field)) nodes[origin_id].add_neighbor(destination_id, distance, accumulations) nodes[destination_id].add_neighbor(origin_id, distance, accumulations) graph_progress.step() N = len(nodes) # The number of nodes in the graph if N == 0: AddWarning(WARNING_NO_NODES) success = False AddMessage(STEP_2_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_2_FAILED) success = False # Step 3 if success: AddMessage(STEP_3_STARTED) try: get_weights = inputs[NODE_WEIGHT_ATTRIBUTE] != "#" get_locations = node_locations_needed # Keep track of number nodes in input points not present in the graph point_not_in_graph_count = 0 input_point_count = int( GetCount_management(inputs[INPUT_POINTS]).getOutput(0)) node_attribute_progress = Progress_Bar(input_point_count, 1, STEP_3) rows = UpdateCursor(inputs[INPUT_POINTS]) for row in rows: id = row.getValue(inputs[ID_ATTRIBUTE]) if not id in nodes: point_not_in_graph_count += 1 continue if get_weights: setattr(nodes[id], WEIGHT, row.getValue(trim(inputs[NODE_WEIGHT_ATTRIBUTE]))) if get_locations: snap_x = row.getValue(trim("SnapX")) snap_y = row.getValue(trim("SnapY")) setattr(nodes[id], LOCATION, (snap_x, snap_y)) node_attribute_progress.step() if point_not_in_graph_count: AddWarning(WARNING_POINTS_NOT_IN_GRAPH(N, point_not_in_graph_count)) AddMessage(STEP_3_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_3_FAILED) success = False # Step 4 if success: AddMessage(STEP_4_STARTED) try: # Compute measures compute_centrality(nodes, selected_features, inputs[COMPUTE_REACH], inputs[COMPUTE_GRAVITY], inputs[COMPUTE_BETWEENNESS], inputs[COMPUTE_CLOSENESS], inputs[COMPUTE_STRAIGHTNESS], inputs[SEARCH_RADIUS], inputs[USE_NETWORK_RADIUS], inputs[BETA], inputs[NORMALIZE_RESULTS], accumulator_fields) AddMessage(STEP_4_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_4_FAILED) success = False # Step 5 if success: AddMessage(STEP_5_STARTED) try: # Make output layer MakeFeatureLayer_management(in_features=output_feature_class, out_layer=output_layer_name) # Save output layer SaveToLayerFile_management(output_layer_name, output_layer, "ABSOLUTE") # Use a test node to figure out which metrics were computed test_node_id = selected_features.pop() # Make sure the test node is in the graph while test_node_id not in nodes: test_node_id = selected_features.pop() test_node = nodes[test_node_id] measures = set([measure for measure in dir(test_node) if (measure in FINAL_ATTRIBUTES or is_accumulator_field(measure))]) # Add a field in the output layer for each computed metric for measure in measures: AddField_management(in_table=output_layer, field_name=trim(measure), field_type="DOUBLE", field_is_nullable="NON_NULLABLE") # Figure out the id field to use based on the type of input buildings if (buildings_description.shapeType == "Polygon" and inputs[ID_ATTRIBUTE] == ORIGINAL_FID): id_field = "FID" else: id_field = inputs[ID_ATTRIBUTE] # Fill the layer with the metric values write_progress = Progress_Bar(N, 1, STEP_5) layer_rows = UpdateCursor(output_layer) for row in layer_rows: id = row.getValue(id_field) for measure in measures: # If no value was computed for this node id, set value to 0 value = 0 if id in nodes and hasattr(nodes[id], measure): value = getattr(nodes[id], measure) row.setValue(trim(measure), value) layer_rows.updateRow(row) write_progress.step() # Save to toolbox output SetParameterAsText(OUTPUT_FEATURE_CLASS, output_feature_class) AddMessage(STEP_5_FINISHED) except: AddWarning(GetMessages(2)) AddMessage(STEP_5_FAILED) success = False # Step 6 if success: AddMessage(STEP_6_STARTED) # Apply symbology try: ApplySymbologyFromLayer_management(in_layer=output_layer, in_symbology_layer=symbology_layer) except: AddWarning(WARNING_APPLY_SYMBOLOGY_FAILED) AddWarning(GetMessages(2)) AddMessage(STEP_6_FAILED) # Display try: current_map_document = mapping.MapDocument("CURRENT") data_frame = mapping.ListDataFrames(current_map_document, "Layers")[0] add_layer = mapping.Layer(output_layer) mapping.AddLayer(data_frame, add_layer, "AUTO_ARRANGE") AddMessage(STEP_6_FINISHED) except: AddWarning(WARNING_FAIL_TO_DISPLAY) AddWarning(GetMessages(2)) AddMessage(STEP_6_FAILED) # Clean up clean_up() AddMessage(SUCCESS if success else FAILURE) except ExecuteAbort: clean_up()