def inference(): thandler = trainer.handler(args.process_command()) rt_data = rt() data = trainer.load_data(rt_data.data, data_type=rt_data.data_type) test_loader = data model_ = models.MLP(300, classes=2) #print(model_) total = sum(p.numel() for p in model_.parameters() if p.requires_grad) print('# of para: {}'.format(total)) model_name = 'MLP.pt' predicted = thandler.predict(model_, test_loader, model_name) print([np.argmax(np.array(i)) for i in predicted])
import args import chainer.links as L import chainer import data_handler as dh import model as cntn import numpy as np from chainer import Chain, optimizers, serializers, Variable from util import key2value import json from getkp import getkp, getSingleAndMoreKP ###load arguments arg = args.process_command() testing_url = arg.predict doc_len = arg.dlen word_len = arg.wlen word_dim = arg.wdim n_units = arg.hdim n_label = arg.label filter_length = arg.flen filter_width = word_len filter_height = word_dim output_channel = arg.channel batch_size = arg.batch n_epoch = arg.epoch model_url = arg.model topk = 10 def loadLine(line, doc_len, word_len): dataset = dh.load_corpus(line, doc_len, word_len)
# this script is for running the whole task # usage: python main.py -g use_gpu -e epochs -b batch_size -lr learning_rate -wd weight_decay import pickle import torch import torch.nn as nn import torch.optim as optim import numpy as np from tqdm import tqdm from torch.utils.data import DataLoader from args import process_command from data import RFMDataset from model import LogisticReg # hyperparemeters arguments = process_command() epochs = arguments.epoch batch_size = arguments.batch learning_rate = arguments.lr weight_decay = arguments.wd use_gpu = torch.cuda.is_available() if __name__ == '__main__': # read preprocessed data print( 'preparing data...' ) with open( './data/preprocess-RFM.pickle', 'rb' ) as f: X, y, test_X, test_y, idx_to_label_dict, header = pickle.load( f ) f.close() cut = int( len( X ) * 0.1 )
import args import rt_data as rt import sys import torch import torch_model as models import training_handler import util from tensorflow import keras from sklearn.svm import SVC from sklearn.metrics import accuracy_score thandler = training_handler.handler(args.process_command()) def RUN_SVC(data): print('SVC') (train_data, train_labels), (test_data, test_labels) = data clf = SVC(C=0.1, gamma='auto') clf.fit(util.padding(train_data), train_labels) y_pred = clf.predict(util.padding(test_data)) print('Accuracy: {}'.format(accuracy_score(test_labels, y_pred))) def data_loader(data_, data_type=[torch.LongTensor, torch.LongTensor]): (train_data, train_labels), (test_data, test_labels) = data_ train_size = int(len(train_data) * 0.1) valid_data = train_data[:train_size]