Esempio n. 1
0
def get_data_loaders(args):
    train_dataset = UnpairedDataset(args.data_dir,
                                    phase='train',
                                    shuffle_pairs=True,
                                    resize_shape=args.resize_shape,
                                    crop_shape=args.crop_shape,
                                    direction=args.direction)
    train_loader = DataLoader(train_dataset,
                              args.batch_size,
                              shuffle=True,
                              num_workers=args.num_workers)

    val_dataset = PairedDataset(args.data_dir,
                                phase='val',
                                resize_shape=args.resize_shape,
                                crop_shape=args.crop_shape,
                                direction=args.direction)
    val_loader = DataLoader(val_dataset,
                            args.batch_size,
                            shuffle=False,
                            num_workers=args.num_workers,
                            drop_last=True)

    return train_loader, val_loader


if __name__ == '__main__':
    parser = TrainArgParser()
    train(parser.parse_args())
        if val_macro_dice.result() > best_val_dice:
            best_val_dice = val_macro_dice.result()
            patience = 0
            if args.save_folder:
                model.save_weights(os.path.join(args.save_folder,
                                                'chkpt.hdf5'))
            print('Saved model weights.', flush=True)
        elif patience == args.patience:
            print(
                'Validation dice has not improved in {} epochs. Stopped training.'
                .format(args.patience),
                flush=True)
            return
        else:
            patience += 1

        # Reset statistics.
        train_loss.reset_states()
        train_macro_dice.reset_states()
        train_micro_dice.reset_states()
        val_loss.reset_states()
        val_macro_dice.reset_states()
        val_micro_dice.reset_states()


if __name__ == '__main__':
    parser = TrainArgParser()
    args = parser.parse_args()
    print('Train args: {}'.format(args), flush=True)
    train(args)
Esempio n. 3
0
from args import TrainArgParser
import util
def train(args):
    """Run training loop with the given args.

    The function consists of the following steps:
        1. Load model: gets the model from a checkpoint or from models/models.py.
        2. Load optimizer and learning rate scheduler.
        3. Get data loaders and class weights.
        4. Get loss functions: cross entropy loss and weighted loss functions.
        5. Get logger, evaluator, and saver.
        6. Run training loop, evaluate and save model periodically.
    """

    model_args = args.model_args
    logger_args = args.logger_args
    optim_args = args.optim_args
    data_args = args.data_args
    transform_args = args.transform_args
    
    print(args)

if __name__ == '__main__':
    parser = TrainArgParser()
    args = util.get_auto_args(parser)
    train(args)
    #train(parser.parse_args())