Esempio n. 1
0
    def test_residual_image_bag(self):
        context = 'wstack'
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        dirty_bag = invert_bag(self.vis_bag,
                               self.model,
                               dopsf=False,
                               context=context,
                               normalize=True,
                               vis_slices=vis_slices[context])
        psf_bag = invert_bag(self.vis_bag,
                             self.model,
                             dopsf=True,
                             context=context,
                             normalize=True,
                             vis_slices=vis_slices[context])
        model_bag = deconvolve_bag(dirty_bag,
                                   psf_bag,
                                   niter=1000,
                                   gain=0.1,
                                   algorithm='msclean',
                                   threshold=0.01,
                                   window_shape=None)

        residual_bag = residual_image_bag(self.vis_bag,
                                          model_bag,
                                          context=context,
                                          vis_slices=vis_slices[context])
        final = list(residual_bag)[0][0]
        export_image_to_fits(
            final,
            '%s/test_bag_%s_residual.fits' % (self.results_dir, context))

        qa = qa_image(final, context=context)
        assert qa.data['max'] < 15.0, str(qa)
    def test_deconvolve_bag(self):
        context = 'wstack'
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        dirty_bag = invert_bag(self.vis_bag,
                               self.model_bag,
                               dopsf=False,
                               context=context,
                               normalize=True,
                               vis_slices=vis_slices[context])
        psf_bag = invert_bag(self.vis_bag,
                             self.model_bag,
                             dopsf=True,
                             context=context,
                             normalize=True,
                             vis_slices=vis_slices[context])
        dirty_bag = reify(dirty_bag)
        psf_bag = reify(psf_bag)
        model_bag = deconvolve_bag(dirty_bag,
                                   psf_bag,
                                   self.empty_model_bag,
                                   niter=1000,
                                   gain=0.7,
                                   algorithm='msclean',
                                   threshold=0.01,
                                   window_shape=None)
        model = model_bag.compute()[0]['image']
        qa = qa_image(model, context=context)

        export_image_to_fits(
            model, '%s/test_bags_%s_deconvolve.fits' % (self.dir, context))

        assert numpy.abs(qa.data['max'] - 60.5) < 0.1, str(qa)
Esempio n. 3
0
    def test_deconvolve_bag(self):
        context = 'wstack'
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        dirty_bag = invert_bag(self.vis_bag,
                               self.model,
                               dopsf=False,
                               context=context,
                               normalize=True,
                               vis_slices=vis_slices[context])
        psf_bag = invert_bag(self.vis_bag,
                             self.model,
                             dopsf=True,
                             context=context,
                             normalize=True,
                             vis_slices=vis_slices[context])
        model_bag = deconvolve_bag(dirty_bag,
                                   psf_bag,
                                   niter=1000,
                                   gain=0.7,
                                   algorithm='msclean',
                                   threshold=0.01,
                                   window_shape=None)
        model = list(model_bag)[0]
        qa = qa_image(model, context=context)

        export_image_to_fits(
            model,
            '%s/test_bag_%s_deconvolve.fits' % (self.results_dir, context))

        assert numpy.abs(qa.data['max'] - 60.5293158864) < 1.0e-7, str(qa)
    def test_residual_image_bag(self):
        context = 'wstack'
        vis_slices = {'wstack': 101}
        dirty_bag = invert_bag(self.vis_bag,
                               self.empty_model_bag,
                               dopsf=False,
                               context=context,
                               normalize=True,
                               vis_slices=vis_slices[context])
        psf_bag = invert_bag(self.vis_bag,
                             self.empty_model_bag,
                             dopsf=True,
                             context=context,
                             normalize=True,
                             vis_slices=vis_slices[context])
        dirty_bag = reify(dirty_bag)
        psf_bag = reify(psf_bag)
        model_bag = deconvolve_bag(dirty_bag,
                                   psf_bag,
                                   self.empty_model_bag,
                                   niter=1000,
                                   gain=0.1,
                                   algorithm='msclean',
                                   threshold=0.01,
                                   window_shape=None)
        residual_bag = residual_image_bag(self.vis_bag,
                                          model_bag,
                                          context=context,
                                          vis_slices=vis_slices[context])
        final = residual_bag.compute()[0]['image'][0]
        export_image_to_fits(
            final, '%s/test_bags_%s_residual.fits' % (self.dir, context))

        qa = qa_image(final, context=context)
        assert qa.data['max'] < 15.0, str(qa)
    def test_predict_bag(self):
        errors = {'2d': 28.0, 'timeslice': 30.0, 'wstack': 2.3}
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        for context in ['wstack', 'timeslice']:
            model_vis_bag = predict_bag(self.vis_bag,
                                        self.model_bag,
                                        context,
                                        vis_slices=vis_slices[context])

            model_vis_bag = reify(model_vis_bag)
            error_vis_bag = self.vis_bag.map(predict_record_subtract,
                                             model_vis_bag)
            error_vis_bag = reify(error_vis_bag)
            error_image_bag = invert_bag(error_vis_bag,
                                         self.model_bag,
                                         dopsf=False,
                                         context=context,
                                         normalize=True,
                                         vis_slices=vis_slices[context])
            result = error_image_bag.compute()
            error_image = result[0]['image'][0]
            export_image_to_fits(
                error_image, '%s/test_bags_%s_predict_error_image.fits' %
                (self.dir, context))
            qa = qa_image(error_image, context='error image for %s' % context)
            assert qa.data['max'] < errors[context], str(qa)
    def test_restore_bag(self):

        peaks = {'wstack': 98.8113067286}
        vis_slices = {'wstack': 101}
        context = 'wstack'
        dirty_bag = invert_bag(self.vis_bag,
                               self.model_bag,
                               dopsf=False,
                               context=context,
                               normalize=True,
                               vis_slices=vis_slices[context])
        psf_bag = invert_bag(self.vis_bag,
                             self.model_bag,
                             dopsf=True,
                             context=context,
                             normalize=True,
                             vis_slices=vis_slices[context])
        dirty_bag = reify(dirty_bag)
        psf_bag = reify(psf_bag)
        model_bag = deconvolve_bag(dirty_bag,
                                   psf_bag,
                                   self.empty_model_bag,
                                   niter=1000,
                                   gain=0.7,
                                   algorithm='msclean',
                                   threshold=0.01,
                                   window_shape=None)
        model_bag = reify(model_bag)

        res_image_bag = residual_image_bag(self.vis_bag,
                                           model_bag,
                                           context=context,
                                           vis_slices=vis_slices[context])
        res_image_bag = reify(res_image_bag)
        residual = res_image_bag.compute()[0]['image'][0]
        export_image_to_fits(
            residual, '%s/test_bags_%s_residual.fits' % (self.dir, context))

        final_bag = restore_bag(model_bag, psf_bag, res_image_bag)
        final = final_bag.compute()[0]
        qa = qa_image(final, context=context)
        export_image_to_fits(
            final, '%s/test_bags_%s_restored.fits' % (self.dir, context))
        assert numpy.abs(qa.data['max'] - peaks[context]) < 0.1, str(qa)
 def test_invert_bag(self):
     peaks = {'2d': 65.2997439062, 'timeslice': 99.6183393299, 'wstack': 100.702701119}
     vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
     for context in ['wstack', '2d', 'timeslice']:
         dirty_bag = invert_bag(self.vis_bag, self.empty_model, dopsf=False,
                                context=context, normalize=True,
                                vis_slices=vis_slices[context])
         dirty_bag.visualize('test_invert_bag.svg')
         result=dirty_bag.compute()
         dirty, sumwt = list(dirty_bag)[0]
         export_image_to_fits(dirty, '%s/test_bag_%s_dirty.fits' % (self.results_dir, context))
         qa = qa_image(dirty, context=context)
         
         assert numpy.abs(qa.data['max'] - peaks[context]) < 1.0e-2, str(qa)
    def test_restore_bag(self):
        cvis_bag = self.vis_bag.map(coalesce_visibility)
    
        peaks = {'timeslice': 103.55068395, 'wstack': 98.790503433}
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        for context in ['timeslice', 'wstack']:
            dirty_bag = invert_bag(self.vis_bag, self.model_bag, dopsf=False,
                                   context=context, normalize=True,
                                   vis_slices=vis_slices[context])
            psf_bag = invert_bag(self.vis_bag, self.model_bag, dopsf=True,
                                 context=context, normalize=True,
                                 vis_slices=vis_slices[context])
            model_bag = deconvolve_bag(dirty_bag, psf_bag, self.empty_model_bag, niter=1000, gain=0.7, algorithm='msclean',
                                       threshold=0.01, window_shape=None)
            
            residual_bag = residual_image_bag(cvis_bag, model_bag, context=context, vis_slices=vis_slices[context])
            residual = list(residual_bag)[0][0]
            export_image_to_fits(residual, '%s/test_bag_%s_residual.fits' % (self.results_dir, context))

            final_bag = restore_bag(model_bag, psf_bag, residual_bag)
            final = list(final_bag)[0]
            qa = qa_image(final, context=context)
            export_image_to_fits(final, '%s/test_bag_%s_restored.fits' % (self.results_dir, context))
            assert numpy.abs(qa.data['max'] - peaks[context]) < 1.0e-2, str(qa)
 def test_predict_bag(self):
     cvis_bag = self.vis_bag.map(coalesce_visibility)
     errors = {'2d': 28.0, 'timeslice': 30.0, 'wstack': 2.3}
     vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
     for context in ['timeslice', 'wstack']:
         model_vis_bag = predict_bag(cvis_bag, self.model_bag, context, vis_slices=vis_slices[context])\
             .map(decoalesce_visibility, self.vis_bag)
         model_vis_bag = bag.from_sequence(model_vis_bag.compute())
         error_vis_bag = self.vis_bag.map(subtract_visibility, model_vis_bag).compute()
         error_vis_bag = bag.from_sequence(error_vis_bag)
         error_image_bag = invert_bag(error_vis_bag, self.model_bag, dopsf=False,
                                      context=context, normalize=True, vis_slices=vis_slices[context])
         result = list(error_image_bag)[0]
         error_image = result[0]
         export_image_to_fits(error_image, '%s/test_bag_%s_predict_error_image.fits' % (self.results_dir, context))
         qa = qa_image(error_image, context='error image for %s' % context)
         assert qa.data['max'] < errors[context], str(qa)
    def test_invert_bag(self):
        peaks = {
            '2d': 65.2997439062,
            'timeslice': 99.6183393299,
            'wstack': 101.099173809
        }
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        for context in ['2d', 'timeslice', 'wstack']:
            dirty_bag = invert_bag(self.vis_bag,
                                   self.empty_model_bag,
                                   dopsf=False,
                                   context=context,
                                   normalize=True,
                                   vis_slices=vis_slices[context])
            dirty, sumwt = dirty_bag.compute()[0]['image']
            export_image_to_fits(
                dirty, '%s/test_bags_%s_dirty.fits' % (self.dir, context))
            qa = qa_image(dirty, context=context)

            assert numpy.abs(qa.data['max'] - peaks[context]) < 1.0e-2, str(qa)
Esempio n. 11
0
 def test_predict_bag(self):
     errors = {'2d': 28.0, 'timeslice': 31.0, 'wstack': 2.3}
     vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
     for context in ['2d', 'timeslice', 'wstack']:
         model_vis_bag = predict_bag(self.vis_bag,
                                     self.model,
                                     context,
                                     vis_slices=vis_slices[context])
         error_vis_bag = residual_vis_bag(self.vis_bag, model_vis_bag)
         error_image_bag = invert_bag(error_vis_bag,
                                      self.model,
                                      dopsf=False,
                                      context=context,
                                      normalize=True,
                                      vis_slices=vis_slices[context])
         result = list(error_image_bag)[0]
         error_image = result[0]
         export_image_to_fits(
             error_image, '%s/test_bag_%s_predict_error_image.fits' %
             (self.results_dir, context))
         qa = qa_image(error_image, context='error image for %s' % context)
         assert qa.data['max'] < errors[context], str(qa)
Esempio n. 12
0
    def test_invert_bag(self):
        peaks = {
            '2d': 65.440798589,
            'timeslice': 99.7403479215,
            'wstack': 100.654001673
        }
        vis_slices = {'2d': None, 'timeslice': 'auto', 'wstack': 101}
        model = copy_image(self.model)
        for context in ['wstack', '2d', 'timeslice']:
            dirty_bag = invert_bag(self.vis_bag,
                                   model,
                                   dopsf=False,
                                   context=context,
                                   normalize=True,
                                   vis_slices=vis_slices[context])
            dirty, sumwt = list(dirty_bag)[0]
            export_image_to_fits(
                dirty,
                '%s/test_bag_%s_dirty.fits' % (self.results_dir, context))
            qa = qa_image(dirty, context=context)

            assert numpy.abs(qa.data['max'] - peaks[context]) < 1.0e-7, str(qa)
    def test_selfcal_global_bag(self):

        self.setupVis(add_errors=True)
        selfcal_vis_bag = selfcal_bag(self.vis_bag,
                                      self.model_bag,
                                      global_solution=True,
                                      context='wstack',
                                      vis_slices=51)
        dirty_bag = invert_bag(selfcal_vis_bag,
                               self.model_bag,
                               dopsf=False,
                               normalize=True,
                               context='wstack',
                               vis_slices=101)
        if self.compute:
            dirty, sumwt = dirty_bag.compute()[0]['image']
            export_image_to_fits(
                dirty,
                '%s/test_imaging_bags_global_selfcal_dirty.fits' % (self.dir))
            qa = qa_image(dirty)

            assert numpy.abs(qa.data['max'] - 101.7) < 1.0, str(qa)
            assert numpy.abs(qa.data['min'] + 3.5) < 1.0, str(qa)
Esempio n. 14
0
def ical_pipeline_bag(block_vis_bag,
                      model_bag,
                      context='2d',
                      first_selfcal=None,
                      **kwargs) -> bag:
    """Create bag for ICAL pipeline
    
    :param vis_bag:
    :param model_bag:
    :param context: Imaging context
    :param first_selfcal: First cycle for phase only selfcal
    :param kwargs: Parameters for functions in bags
    :return:
    """
    assert isinstance(block_vis_bag, bag.Bag), block_vis_bag
    assert isinstance(model_bag, bag.Bag), model_bag

    vis_bag = block_vis_bag.map(map_record,
                                convert_blockvisibility_to_visibility)
    psf_bag = invert_bag(vis_bag,
                         model_bag,
                         context=context,
                         dopsf=True,
                         **kwargs)
    psf_bag = reify(psf_bag)

    # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
    # form the residual visibility, then make the residual image
    model_vis_bag = reify(
        predict_bag(vis_bag, model_bag, context=context, **kwargs))
    if first_selfcal is not None and first_selfcal == 0:
        vis_bag = reify(
            selfcal_record(block_vis_bag,
                           model_vis_bag=model_vis_bag,
                           **kwargs))
    res_vis_bag = reify(residual_vis_bag(vis_bag, model_vis_bag))
    res_bag = invert_bag(res_vis_bag,
                         model_bag,
                         context=context,
                         dopsf=False,
                         **kwargs)
    res_bag = reify(res_bag)

    deconvolve_model_bag = reify(
        deconvolve_bag(res_bag, psf_bag, model_bag, **kwargs))

    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            model_vis_bag = reify(
                predict_bag(vis_bag,
                            deconvolve_model_bag,
                            context=context,
                            **kwargs))
            if first_selfcal is not None and cycle >= first_selfcal:
                vis_bag = reify(
                    selfcal_record(block_vis_bag,
                                   model_vis_bag=model_vis_bag,
                                   **kwargs))
            res_vis_bag = reify(residual_vis_bag(vis_bag, model_vis_bag))
            res_bag = invert_bag(res_vis_bag,
                                 model_bag,
                                 context=context,
                                 dopsf=False,
                                 **kwargs)
            res_bag = reify(res_bag)
            deconvolve_model_bag = reify(
                deconvolve_bag(res_bag, psf_bag, deconvolve_model_bag,
                               **kwargs))

    res_bag = residual_image_bag(vis_bag,
                                 deconvolve_model_bag,
                                 context=context,
                                 **kwargs)
    res_bag = reify(res_bag)
    deconvolve_model_bag = reify(deconvolve_model_bag)
    rest_bag = restore_bag(deconvolve_model_bag, psf_bag, res_bag, **kwargs)
    rest_bag = reify(rest_bag)
    return bag.from_sequence([deconvolve_model_bag, res_bag, rest_bag])