Esempio n. 1
0
def test_report_init():
    antigen_array = np.empty(shape=(2, 3), dtype='U100')
    antigen_array[0, 0] = 'antigen_0_0'
    antigen_array[1, 2] = 'antigen_1_2'
    antigen_array[0, 1] = 'suuuuuuuuper_loooooooong_antigen_name'
    constants.ANTIGEN_ARRAY = antigen_array
    constants.RUN_PATH = 'test_run_dir'
    # Create instance
    reporter = report.ReportWriter()
    # Check paths
    assert reporter.od_path == 'test_run_dir/median_ODs.xlsx'
    assert reporter.int_path == 'test_run_dir/median_intensities.xlsx'
    assert reporter.bg_path == 'test_run_dir/median_backgrounds.xlsx'
    # Check that antigens have correct names and indices
    antigen_df = reporter.antigen_df
    assert antigen_df.shape == (3, 3)
    antigen = antigen_df.loc[(antigen_df['grid_row'] == 0) &
                             (antigen_df['grid_col'] == 0),
                             'antigen'].values[0]
    assert antigen == '0_0_antigen_0_0'

    antigen = antigen_df.loc[(antigen_df['grid_row'] == 1) &
                             (antigen_df['grid_col'] == 2),
                             'antigen'].values[0]
    assert antigen == '1_2_antigen_1_2'

    antigen = antigen_df.loc[(antigen_df['grid_row'] == 0) &
                             (antigen_df['grid_col'] == 1),
                             'antigen'].values[0]
    assert antigen == '0_1_suuuuuuuuper_loooooooong_an'
Esempio n. 2
0
def test_load_existing_reports(report_test):
    # Write od, intensity and background reports
    antigen_names = ['0_0_antigen_0_0', '1_2_antigen_1_2']
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_intensities.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_backgrounds.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_ODs.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    # Load existing reports and make sure they're the same
    reporter = report.ReportWriter()
    reporter.load_existing_reports()
    for antigen_name in antigen_names:
        int_df = reporter.report_int[antigen_name]
        int_df.equals(report_test[antigen_name])
        bg_df = reporter.report_bg[antigen_name]
        bg_df.equals(report_test[antigen_name])
        od_df = reporter.report_od[antigen_name]
        od_df.equals(report_test[antigen_name])
Esempio n. 3
0
def test_load_missing_int_reports(report_test):
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_ODs.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in ['0_0_antigen_0_0', '1_2_antigen_1_2']:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    # Make sure we get an assertion error
    reporter = report.ReportWriter()
    with pytest.raises(AssertionError):
        reporter.load_existing_reports()
Esempio n. 4
0
def test_antigen_df():
    antigen_array = np.empty(shape=(2, 3), dtype='U100')
    antigen_array[0, 0] = 'antigen_0_0'
    antigen_array[1, 2] = 'antigen_1_2'
    constants.ANTIGEN_ARRAY = antigen_array
    # Create instance
    reporter = report.ReportWriter()
    antigen_df = reporter.get_antigen_df()
    assert antigen_df.shape == (2, 3)
    assert list(antigen_df) == ['antigen', 'grid_row', 'grid_col']
    assert list(antigen_df['antigen'].values) == \
           ['0_0_antigen_0_0', '1_2_antigen_1_2']
Esempio n. 5
0
def test_assign_well_to_plate():
    well_name = 'D11'
    # Create some spots
    df_cols = [
        'grid_row', 'grid_col', 'intensity_median', 'bg_median', 'od_norm'
    ]
    spots_df = pd.DataFrame(columns=df_cols)
    df_row = {
        'grid_row': 0,
        'grid_col': 0,
        'intensity_median': 1.,
        'bg_median': .5,
        'od_norm': .75
    }
    spots_df = spots_df.append(df_row, ignore_index=True)
    df_row = {
        'grid_row': 0,
        'grid_col': 1,
        'intensity_median': 0.,
        'bg_median': .5,
        'od_norm': .2
    }
    spots_df = spots_df.append(df_row, ignore_index=True)
    df_row = {
        'grid_row': 1,
        'grid_col': 2,
        'intensity_median': .1,
        'bg_median': .2,
        'od_norm': .3
    }
    spots_df = spots_df.append(df_row, ignore_index=True)
    # Create antigens with matching indices
    antigen_array = np.empty(shape=(2, 3), dtype='U100')
    antigen_array[0, 0] = 'antigen_0_0'
    antigen_array[1, 2] = 'antigen_1_2'
    constants.ANTIGEN_ARRAY = antigen_array
    # Assign wells to plate and check values
    reporter = report.ReportWriter()
    reporter.create_new_reports()
    reporter.assign_well_to_plate(well_name=well_name, spots_df=spots_df)
    assert list(reporter.report_int['0_0_antigen_0_0']) ==\
           ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
    assert list(reporter.report_int['0_0_antigen_0_0'].index) ==\
           ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']

    assert reporter.report_int['0_0_antigen_0_0'].at['D', '11'] == 1.
    assert reporter.report_bg['0_0_antigen_0_0'].at['D', '11'] == .5
    assert reporter.report_od['0_0_antigen_0_0'].at['D', '11'] == .75
    assert reporter.report_int['1_2_antigen_1_2'].at['D', '11'] == .1
    assert reporter.report_bg['1_2_antigen_1_2'].at['D', '11'] == .2
    assert reporter.report_od['1_2_antigen_1_2'].at['D', '11'] == .3
Esempio n. 6
0
def test_create_new_reports(report_test):
    # Check the dicts that will be reports
    reporter = report.ReportWriter()
    reporter.create_new_reports()
    assert list(reporter.report_int) == [
        '0_0_antigen_0_0',
        '1_2_antigen_1_2',
    ]
    # Check first dataframe
    plate_df = reporter.report_int['0_0_antigen_0_0']
    assert plate_df.shape == (8, 12)
    assert list(plate_df) ==\
        ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
    assert list(plate_df.index) == ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
Esempio n. 7
0
def test_write_reports(tmpdir_factory):
    output_dir = tmpdir_factory.mktemp("output_dir")
    constants.RUN_PATH = output_dir
    antigen_array = np.empty(shape=(2, 3), dtype='U100')
    antigen_array[0, 0] = 'antigen_0_0'
    antigen_array[1, 2] = 'antigen_1_2'
    constants.ANTIGEN_ARRAY = antigen_array
    # Create fake spots dataframe
    df_cols = [
        'grid_row', 'grid_col', 'intensity_median', 'bg_median', 'od_norm'
    ]
    spots_df = pd.DataFrame(columns=df_cols)
    df_row = {
        'grid_row': 0,
        'grid_col': 0,
        'intensity_median': 1.,
        'bg_median': .5,
        'od_norm': .75
    }
    spots_df = spots_df.append(df_row, ignore_index=True)
    df_row = {
        'grid_row': 1,
        'grid_col': 2,
        'intensity_median': .1,
        'bg_median': .2,
        'od_norm': .3
    }
    spots_df = spots_df.append(df_row, ignore_index=True)
    # Create report instance and write a few wells
    reporter = report.ReportWriter()
    reporter.create_new_reports()
    reporter.assign_well_to_plate('C11', spots_df)
    reporter.assign_well_to_plate('D4', spots_df)
    spots_df.loc[1, 'od_norm'] = 10
    reporter.assign_well_to_plate('A7', spots_df)
    reporter.write_reports()
    # Load reports and check values
    od_path = os.path.join(output_dir, 'median_ODs.xlsx')
    report_od = pd.read_excel(od_path, sheet_name=None, index_col=0)
    assert report_od['0_0_antigen_0_0'].at['C', '11'] == .75
    assert report_od['1_2_antigen_1_2'].at['C', '11'] == .3
    assert report_od['0_0_antigen_0_0'].at['D', '4'] == .75
    assert report_od['1_2_antigen_1_2'].at['D', '4'] == .3
    assert report_od['0_0_antigen_0_0'].at['A', '7'] == .75
    assert report_od['1_2_antigen_1_2'].at['A', '7'] == 10.
Esempio n. 8
0
def test_load_existing_reports_wrong_antigens_bg(report_test):
    # Write od, intensity and background reports
    antigen_names = ['0_0_antigen_0_0', '1_2_antigen_1_2']
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_intensities.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name + 'wrong')
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_backgrounds.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    xlsx_path = os.path.join(constants.RUN_PATH, 'median_ODs.xlsx')
    with pd.ExcelWriter(xlsx_path) as writer:
        for antigen_name in antigen_names:
            sheet_df = report_test[antigen_name]
            sheet_df.to_excel(writer, sheet_name=antigen_name)
    # Make sure we get an assertion error
    reporter = report.ReportWriter()
    with pytest.raises(AssertionError):
        reporter.load_existing_reports()
Esempio n. 9
0
def test_load_missing_reports(report_test):
    # Make sure we get an assertion error
    reporter = report.ReportWriter()
    with pytest.raises(AssertionError):
        reporter.load_existing_reports()
Esempio n. 10
0
def interp(input_dir, output_dir):

    MetaData(input_dir, output_dir)

    # Initialize background estimator
    bg_estimator = background_estimator.BackgroundEstimator2D(
        block_size=128,
        order=2,
        normalize=False,
    )
    reporter = report.ReportWriter()
    well_xlsx_path = os.path.join(
        constants.RUN_PATH,
        'stats_per_well.xlsx',
    )
    well_xlsx_writer = pd.ExcelWriter(well_xlsx_path)
    antigen_df = reporter.get_antigen_df()
    antigen_df.to_excel(well_xlsx_writer, sheet_name='antigens')

    # ================
    # loop over images => good place for multiproc?  careful with columns in report
    # ================
    well_images = io_utils.get_image_paths(input_dir)

    for well_name, im_path in well_images.items():
        start = time.time()
        image = io_utils.read_gray_im(im_path)

        spot_props_array = txt_parser.create_array(
            constants.params['rows'],
            constants.params['columns'],
            dtype=object,
        )
        bgprops_array = txt_parser.create_array(
            constants.params['rows'],
            constants.params['columns'],
            dtype=object,
        )

        # finding center of well and cropping
        well_center, well_radi, well_mask = image_parser.find_well_border(
            image, detmethod='region', segmethod='otsu')
        im_crop, _ = img_processing.crop_image_at_center(
            image, well_center, 2 * well_radi, 2 * well_radi)

        # find center of spots from crop
        spot_mask = img_processing.thresh_and_binarize(im_crop,
                                                       method='bright_spots')
        spot_props = image_parser.generate_props(spot_mask,
                                                 intensity_image=im_crop)

        # if debug:

        crop_coords = image_parser.grid_from_centroids(
            spot_props, constants.params['rows'], constants.params['columns'])

        # convert to float64
        im_crop = im_crop / np.iinfo(im_crop.dtype).max
        background = bg_estimator.get_background(im_crop)
        spots_df, spot_props = array_gen.get_spot_intensity(
            coords=crop_coords,
            im=im_crop,
            background=background,
            params=constants.params,
        )
        # Write metrics for each spot in grid in current well
        spots_df.to_excel(well_xlsx_writer, sheet_name=well_name)
        # Assign well OD, intensity, and background stats to plate
        reporter.assign_well_to_plate(well_name, spots_df)

        stop = time.time()
        print(f"\ttime to process={stop-start}")

        # SAVE FOR DEBUGGING
        if constants.DEBUG:
            # Save spot and background intensities.
            output_name = os.path.join(constants.RUN_PATH, well_name)

            # # Save mask of the well, cropped grayscale image, cropped spot segmentation.
            io.imsave(output_name + "_well_mask.png",
                      (255 * well_mask).astype('uint8'))
            io.imsave(output_name + "_crop.png",
                      (255 * im_crop).astype('uint8'))
            io.imsave(output_name + "_crop_binary.png",
                      (255 * spot_mask).astype('uint8'))

            # Evaluate accuracy of background estimation with green (image), magenta (background) overlay.
            im_bg_overlay = np.stack([background, im_crop, background], axis=2)

            io.imsave(output_name + "_crop_bg_overlay.png",
                      (255 * im_bg_overlay).astype('uint8'))

            # This plot shows which spots have been assigned what index.
            debug_plots.plot_centroid_overlay(
                im_crop,
                constants.params,
                spot_props,
                output_name,
            )
            debug_plots.plot_od(
                spots_df=spots_df,
                nbr_grid_rows=constants.params['rows'],
                nbr_grid_cols=constants.params['columns'],
                output_name=output_name,
            )
            # save a composite of all spots, where spots are from source or from region prop
            debug_plots.save_composite_spots(
                spot_props,
                output_name,
                image=im_crop,
            )
            debug_plots.save_composite_spots(
                spot_props,
                output_name,
                image=im_crop,
                from_source=True,
            )
            stop2 = time.time()
            print(f"\ttime to save debug={stop2-stop}")

    # After running all wells, write plate reports
    well_xlsx_writer.close()
    reporter.write_reports()
Esempio n. 11
0
def point_registration(input_dir, output_dir):
    """
    For each image in input directory, detect spots using particle filtering
    to register fiducial spots to blobs detected in the image.

    :param str input_dir: Input directory containing images and an xml file
        with parameters
    :param str output_dir: Directory where output is written to
    """
    logger = logging.getLogger(constants.LOG_NAME)

    metadata.MetaData(input_dir, output_dir)
    nbr_outliers = constants.params['nbr_outliers']

    # Create reports instance for whole plate
    reporter = report.ReportWriter()
    # Create writer for stats per well
    well_xlsx_path = os.path.join(
        constants.RUN_PATH,
        'stats_per_well.xlsx',
    )
    well_xlsx_writer = pd.ExcelWriter(well_xlsx_path)
    antigen_df = reporter.get_antigen_df()
    antigen_df.to_excel(well_xlsx_writer, sheet_name='antigens')

    # Initialize background estimator
    bg_estimator = background_estimator.BackgroundEstimator2D(
        block_size=128,
        order=2,
        normalize=False,
    )

    # Get grid rows and columns from params
    nbr_grid_rows = constants.params['rows']
    nbr_grid_cols = constants.params['columns']
    fiducials_idx = constants.FIDUCIALS_IDX
    # Create spot detector instance
    spot_detector = img_processing.SpotDetector(
        imaging_params=constants.params, )

    well_images = io_utils.get_image_paths(input_dir)
    well_names = list(well_images)
    # If rerunning only a subset of wells
    if constants.RERUN:
        logger.info("Rerunning wells: {}".format(constants.RERUN_WELLS))
        txt_parser.rerun_xl_od(
            well_names=well_names,
            well_xlsx_path=well_xlsx_path,
            rerun_names=constants.RERUN_WELLS,
            xlsx_writer=well_xlsx_writer,
        )
        reporter.load_existing_reports()
        well_names = constants.RERUN_WELLS
        # remove debug images from old runs
        for f in os.listdir(constants.RUN_PATH):
            if f.split('_')[0] in well_names:
                os.remove(os.path.join(constants.RUN_PATH, f))
    else:
        reporter.create_new_reports()

    # ================
    # loop over well images
    # ================
    for well_name in well_names:
        start_time = time.time()
        im_path = well_images[well_name]
        image = io_utils.read_gray_im(im_path)
        logger.info("Extracting well: {}".format(well_name))
        # Get max intensity
        max_intensity = io_utils.get_max_intensity(image)
        logger.debug("Image max intensity: {}".format(max_intensity))
        # Crop image to well only
        """""
        try:
            well_center, well_radi, _ = image_parser.find_well_border(
                image,
                detmethod='region',
                segmethod='otsu',
            )
            im_well, _ = img_processing.crop_image_at_center(
                im=image,
                center=well_center,
                height=2 * well_radi,
                width=2 * well_radi,
            )
        except IndexError:
            logging.warning("Couldn't find well in {}".format(well_name))
            im_well = image
        """ ""
        im_well = image
        # Find spot center coordinates
        spot_coords = spot_detector.get_spot_coords(
            im=im_well,
            max_intensity=max_intensity,
        )
        if spot_coords.shape[0] < constants.MIN_NBR_SPOTS:
            logging.warning("Not enough spots detected in {},"
                            "continuing.".format(well_name))
            continue
        # Create particle filter registration instance
        register_inst = registration.ParticleFilter(
            spot_coords=spot_coords,
            im_shape=im_well.shape,
            fiducials_idx=fiducials_idx,
        )
        register_inst.particle_filter()
        if not register_inst.registration_ok:
            logger.warning("Registration failed for {}, "
                           "repeat with outlier removal".format(well_name))
            register_inst.particle_filter(nbr_outliers=nbr_outliers)
        # Transform grid coordinates
        registered_coords = register_inst.compute_registered_coords()
        # Check that registered coordinates are inside well
        registration_ok = register_inst.check_reg_coords()
        if not registration_ok:
            logger.warning("Final registration failed,"
                           "will not write OD for {}".format(well_name))
            if constants.DEBUG:
                debug_plots.plot_registration(
                    im_well,
                    spot_coords,
                    register_inst.fiducial_coords,
                    registered_coords,
                    os.path.join(constants.RUN_PATH, well_name + '_failed'),
                    max_intensity=max_intensity,
                )
            continue

        # Crop image
        im_crop, crop_coords = img_processing.crop_image_from_coords(
            im=im_well,
            coords=registered_coords,
        )
        im_crop = im_crop / max_intensity
        # Estimate background
        background = bg_estimator.get_background(im_crop)
        # Find spots near grid locations and compute properties
        spots_df, spot_props = array_gen.get_spot_intensity(
            coords=crop_coords,
            im=im_crop,
            background=background,
        )
        # Write metrics for each spot in grid in current well
        spots_df.to_excel(well_xlsx_writer, sheet_name=well_name)
        # Assign well OD, intensity, and background stats to plate
        reporter.assign_well_to_plate(well_name, spots_df)

        time_msg = "Time to extract OD in {}: {:.3f} s".format(
            well_name,
            time.time() - start_time,
        )
        print(time_msg)
        logger.info(time_msg)

        # ==================================
        # SAVE FOR DEBUGGING
        if constants.DEBUG:
            start_time = time.time()
            # Save spot and background intensities
            output_name = os.path.join(constants.RUN_PATH, well_name)
            # Save OD plots, composite spots and registration
            debug_plots.plot_od(
                spots_df=spots_df,
                nbr_grid_rows=nbr_grid_rows,
                nbr_grid_cols=nbr_grid_cols,
                output_name=output_name,
            )
            debug_plots.save_composite_spots(
                spot_props=spot_props,
                output_name=output_name,
                image=im_crop,
            )
            debug_plots.plot_background_overlay(
                im_crop,
                background,
                output_name,
            )
            debug_plots.plot_registration(
                image=im_well,
                spot_coords=spot_coords,
                grid_coords=register_inst.fiducial_coords,
                reg_coords=registered_coords,
                output_name=output_name,
                max_intensity=max_intensity,
            )
            logger.debug(
                "Time to save debug images: {:.3f} s".format(time.time() -
                                                             start_time), )

    # After running all wells, write plate reports
    well_xlsx_writer.close()
    reporter.write_reports()