Esempio n. 1
0
def test_generate(fix_get_mnist_subset, image_dl_estimator_for_attack):
    classifier_list = image_dl_estimator_for_attack(ShadowAttack)

    for classifier in classifier_list:
        attack = ShadowAttack(
            estimator=classifier,
            sigma=0.5,
            nb_steps=3,
            learning_rate=0.1,
            lambda_tv=0.3,
            lambda_c=1.0,
            lambda_s=0.5,
            batch_size=32,
            targeted=True,
        )

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist[0:1],
                                            y=y_train_mnist[0:1])

        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist[0:1])) == pytest.approx(
                                 0.34966960549354553, abs=0.06)
def test_generate(fix_get_mnist_subset, get_image_classifier_list_for_attack):

    classifier_list = get_image_classifier_list_for_attack(ShadowAttack)

    if classifier_list is None:
        logging.warning(
            "Couldn't perform  this test because no classifier is defined")
        return

    for classifier in classifier_list:
        attack = ShadowAttack(
            estimator=classifier,
            sigma=0.5,
            nb_steps=3,
            learning_rate=0.1,
            lambda_tv=0.3,
            lambda_c=1.0,
            lambda_s=0.5,
            batch_size=32,
            targeted=True,
        )

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        if attack.framework == "pytorch":
            x_train_mnist = x_train_mnist.transpose((0, 3, 1, 2))

        x_train_mnist_adv = attack.generate(x=x_train_mnist[0:1],
                                            y=y_train_mnist[0:1])

        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist[0:1])) == pytest.approx(
                                 0.34966960549354553, 0.06)
Esempio n. 3
0
def test_generate(art_warning, fix_get_mnist_subset,
                  image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(ShadowAttack)
        attack = ShadowAttack(
            estimator=classifier,
            sigma=0.5,
            nb_steps=3,
            learning_rate=0.1,
            lambda_tv=0.3,
            lambda_c=1.0,
            lambda_s=0.5,
            batch_size=32,
            targeted=True,
            verbose=False,
        )

        (x_train_mnist, y_train_mnist, x_test_mnist,
         y_test_mnist) = fix_get_mnist_subset

        x_train_mnist_adv = attack.generate(x=x_train_mnist[0:1],
                                            y=y_train_mnist[0:1])

        assert np.max(np.abs(x_train_mnist_adv -
                             x_train_mnist[0:1])) == pytest.approx(0.38116083,
                                                                   abs=0.06)
    except ARTTestException as e:
        art_warning(e)
Esempio n. 4
0
def main():
    with open('data.json') as data_json:
        data_params = json.load(data_json)

    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str)
    parser.add_argument('--data_path', type=str, default='data')
    parser.add_argument('--output_path', type=str, default='results')
    parser.add_argument('--pretrained', type=str, required=True)
    parser.add_argument('--batch_size', type=int, default=128)
    parser.add_argument('--attack', type=str, required=True, choices=data_params['attacks'])
    parser.add_argument('--eps', type=float, default=0.3)
    # NOTE: In CW_L2 attack, eps is the upper bound of c.
    parser.add_argument('--n_samples', type=int, default=2000)
    parser.add_argument('--random_state', type=int, default=1234)
    args = parser.parse_args()
    print(args)

    set_seeds(args.random_state)
    
    if not os.path.exists(args.output_path):
        print('Output folder does not exist. Create:', args.output_path)
        os.mkdir(args.output_path)
        
    print('Dataset:', args.data)
    print('Pretrained model:', args.pretrained)
    print('Running attack: {}'.format(args.attack))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print('Device: {}'.format(device))

    # Prepare data
    transforms = tv.transforms.Compose([tv.transforms.ToTensor()])

    if args.data == 'mnist':
        dataset_train = datasets.MNIST(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.MNIST(args.data_path, train=False, download=True, transform=transforms)
    elif args.data == 'cifar10':
        dataset_train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=transforms)
        dataset_test = datasets.CIFAR10(args.data_path, train=False, download=True, transform=transforms)
    else:
        data_path = os.path.join(args.data_path, data_params['data'][args.data]['file_name'])
        print('Read file:', data_path)
        X, y = load_csv(data_path)

        X_train, X_test, y_train, y_test = train_test_split(
            X, y,
            test_size=data_params['data'][args.data]['n_test'],
            random_state=args.random_state)
        scaler = MinMaxScaler().fit(X_train)
        X_train = scaler.transform(X_train)
        X_test = scaler.transform(X_test)
        dataset_train = TensorDataset(torch.from_numpy(X_train).type(torch.float32), torch.from_numpy(y_train).type(torch.long))
        dataset_test = TensorDataset(torch.from_numpy(X_test).type(torch.float32), torch.from_numpy(y_test).type(torch.long))

    dataloader_train = DataLoader(dataset_train, 256, shuffle=False)
    dataloader_test = DataLoader(dataset_test, 256, shuffle=False)

    shape_train = get_shape(dataloader_train.dataset)
    shape_test = get_shape(dataloader_test.dataset)
    print('Train set:', shape_train)
    print('Test set:', shape_test)

    # Load model
    use_prob = args.attack not in ['apgd', 'apgd1', 'apgd2', 'cw2', 'cwinf']
    print('Attack:', args.attack)
    print('Using softmax layer:', use_prob)
    if args.data == 'mnist':
        model = BaseModel(use_prob=use_prob).to(device)
        model_name = 'basic'
    elif args.data == 'cifar10':
        model_name = args.pretrained.split('_')[1]
        if model_name == 'resnet':
            model = Resnet(use_prob=use_prob).to(device)
        elif model_name == 'vgg':
            model = Vgg(use_prob=use_prob).to(device)
        else:
            raise ValueError('Unknown model: {}'.format(model_name))
    else:
        n_features = data_params['data'][args.data]['n_features']
        n_classes = data_params['data'][args.data]['n_classes']
        model = NumericModel(
            n_features,
            n_hidden=n_features * 4,
            n_classes=n_classes,
            use_prob=use_prob).to(device)
        model_name = 'basic' + str(n_features * 4)

    optimizer = optim.SGD(model.parameters(), lr=0.01,
                          momentum=0.9, weight_decay=5e-4)
    loss = nn.CrossEntropyLoss()
    pretrained_path = os.path.join(args.output_path, args.pretrained)
    model.load_state_dict(torch.load(pretrained_path, map_location=device))

    _, acc_train = validate(model, dataloader_train, loss, device)
    _, acc_test = validate(model, dataloader_test, loss, device)
    print('Accuracy on train set: {:.4f}%'.format(acc_train * 100))
    print('Accuracy on test set: {:.4f}%'.format(acc_test * 100))

    # Create a subset which only contains recognisable samples.
    tensor_test_X, tensor_test_y = get_correct_examples(
        model, dataset_test, device=device, return_tensor=True)
    dataset_perfect = TensorDataset(tensor_test_X, tensor_test_y)
    loader_perfect = DataLoader(dataset_perfect, batch_size=512, shuffle=False)
    _, acc_perfect = validate(model, loader_perfect, loss, device)
    print('Accuracy on {} filtered test examples: {:.4f}%'.format(
        len(dataset_perfect), acc_perfect * 100))

    # Generate adversarial examples
    n_features = data_params['data'][args.data]['n_features']
    n_classes = data_params['data'][args.data]['n_classes']
    if isinstance(n_features, int):
        n_features = (n_features,)

    classifier = PyTorchClassifier(
        model=model,
        loss=loss,
        input_shape=n_features,
        optimizer=optimizer,
        nb_classes=n_classes,
        clip_values=(0.0, 1.0),
        device_type='gpu')

    if args.attack == 'apgd':
        eps_step = args.eps / 10.0 if args.eps <= 0.1 else 0.1
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd1':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=1,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'apgd2':
        attack = AutoProjectedGradientDescent(
            estimator=classifier,
            norm=2,
            eps=args.eps,
            eps_step=0.1,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'bim':
        eps_step = args.eps / 10.0
        attack = BasicIterativeMethod(
            estimator=classifier,
            eps=args.eps,
            eps_step=eps_step,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'boundary':
        attack = BoundaryAttack(
            estimator=classifier,
            max_iter=1000,
            sample_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cw2':
        # NOTE: Do NOT increase the batch size!
        attack = CarliniWagnerAttackL2(
            model=model,
            n_classes=n_classes,
            confidence=args.eps,
            verbose=True,
            check_prob=False,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'cwinf':
        attack = CarliniLInfMethod(
            classifier=classifier,
            confidence=args.eps,
            max_iter=1000,
            batch_size=args.batch_size,
            targeted=False)
    elif args.attack == 'deepfool':
        attack = DeepFool(
            classifier=classifier,
            epsilon=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'fgsm':
        attack = FastGradientMethod(
            estimator=classifier,
            eps=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'jsma':
        attack = SaliencyMapMethod(
            classifier=classifier,
            gamma=args.eps,
            batch_size=args.batch_size)
    elif args.attack == 'line':
        if args.data == 'mnist':
            color = args.eps
        elif args.data == 'cifar10':
            color = (args.eps, args.eps, args.eps)
        else:
            raise NotImplementedError
        attack = LineAttack(color=color, thickness=1)
    elif args.attack == 'shadow':
        attack = ShadowAttack(
            estimator=classifier,
            batch_size=args.batch_size,
            targeted=False,
            verbose=False)
    elif args.attack == 'watermark':
        attack = WaterMarkAttack(
            eps=args.eps,
            n_classes=data_params['data'][args.data]['n_classes'],
            x_min=0.0,
            x_max=1.0,
            targeted=False)

        X_train, y_train = get_correct_examples(model, dataset_train, device=device, return_tensor=True)
        X_train = X_train.cpu().detach().numpy()
        y_train = y_train.cpu().detach().numpy()
        attack.fit(X_train, y_train)
    else:
        raise NotImplementedError

    if len(dataset_perfect) > args.n_samples:
        n = args.n_samples
    else:
        n = len(dataset_perfect)

    X_benign = tensor_test_X[:n].cpu().detach().numpy()
    y = tensor_test_y[:n].cpu().detach().numpy()

    print('Creating {} adversarial examples with eps={} (Not all attacks use eps)'.format(n, args.eps))
    time_start = time.time()
    # Shadow attack only takes single sample!
    if args.attack == 'shadow':
        adv = np.zeros_like(X_benign)
        for i in trange(len(X_benign)):
            adv[i] = attack.generate(x=np.expand_dims(X_benign[i], axis=0))
    elif args.attack == 'watermark':
        # This is untargeted.
        adv = attack.generate(X_benign, y)
    else:
        adv = attack.generate(x=X_benign)
    time_elapsed = time.time() - time_start
    print('Total time spend: {}'.format(str(datetime.timedelta(seconds=time_elapsed))))

    pred_benign = np.argmax(classifier.predict(X_benign), axis=1)
    acc_benign = np.sum(pred_benign == y) / n
    pred_adv = np.argmax(classifier.predict(adv), axis=1)
    acc_adv = np.sum(pred_adv == y) / n
    print("Accuracy on benign samples: {:.4f}%".format(acc_benign * 100))
    print("Accuracy on adversarial examples: {:.4f}%".format(acc_adv * 100))

    # Save results
    if args.n_samples < 2000:
        output_file = '{}_{}_{}_{}_size{}'.format(args.data, model_name, args.attack, str(args.eps), args.n_samples)
    else:
        output_file = '{}_{}_{}_{}'.format(args.data, model_name, args.attack, str(args.eps))

    path_x = os.path.join(args.output_path, '{}_x.npy'.format(output_file))
    path_y = os.path.join(args.output_path, '{}_y.npy'.format(output_file))
    path_adv = os.path.join(args.output_path, '{}_adv.npy'.format(output_file))
    np.save(path_x, X_benign)
    np.save(path_y, y)
    np.save(path_adv, adv)

    print('Saved to:', '{}_adv.npy'.format(output_file))
    print()
Esempio n. 5
0
def test_get_regularisation_loss_gradients(fix_get_mnist_subset,
                                           image_dl_estimator_for_attack):
    classifier_list = image_dl_estimator_for_attack(ShadowAttack)

    for classifier in classifier_list:

        attack = ShadowAttack(
            estimator=classifier,
            sigma=0.5,
            nb_steps=3,
            learning_rate=0.1,
            lambda_tv=0.3,
            lambda_c=1.0,
            lambda_s=0.5,
            batch_size=32,
            targeted=True,
        )

        (x_train_mnist, _, _, _) = fix_get_mnist_subset

        gradients = attack._get_regularisation_loss_gradients(
            x_train_mnist[0:1])

        gradients_expected = np.array([
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            -0.27294118,
            -0.36906054,
            0.83799828,
            0.40741005,
            0.65682181,
            -0.13141348,
            -0.39729583,
            -0.12235294,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
        ])

        if attack.framework == "pytorch":
            np.testing.assert_array_almost_equal(gradients[0, 0, 14, :],
                                                 gradients_expected,
                                                 decimal=3)
        else:
            np.testing.assert_array_almost_equal(gradients[0, 14, :, 0],
                                                 gradients_expected,
                                                 decimal=3)
Esempio n. 6
0
def test_check_params(art_warning, image_dl_estimator_for_attack):
    try:
        classifier = image_dl_estimator_for_attack(ShadowAttack)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, sigma="test")
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, sigma=-0.5)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, nb_steps=0.5)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, nb_steps=-5)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, learning_rate=5)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, learning_rate=-5.0)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_tv=5)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_tv=-5.0)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_c=5)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_c=-5.0)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_s=5)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, lambda_s=-5.0)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, batch_size=5.0)
        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, batch_size=-5)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, targeted=5.0)

        with pytest.raises(ValueError):
            _ = ShadowAttack(classifier, verbose=5.0)

    except ARTTestException as e:
        art_warning(e)