Esempio n. 1
0
def main():
  # User controlled arguments
  parser = argparse.ArgumentParser()
  parser.add_argument("--inFileName", type=str, default="", help="The path to the input file from runBumpHunter")
  parser.add_argument("--outPath", type=str, default="", help="The path prefix (directory) where you want the output plots")
  parser.add_argument("--lumi", type=float, default=1, help="Luminosity")
  parser.add_argument("--signalFileName", type=str, default="", help="Signal histogram overlaid on background")

  args = parser.parse_args()
  inFileName = args.inFileName
  outPath = args.outPath
  luminosity = args.lumi*1000
  signalFileName = args.signalFileName
    
  print "==================================="
  print "inputFile       : ",inFileName
  print "outPath       : ",outPath
  print "Luminosity       : ",args.lumi
  print "Signal File       : ",signalFileName
  print "==================================="

  # Get input root file
  inFile = ROOT.TFile.Open(inFileName, "READ")
  if not inFile:
    print inFileName, " doesn't exist."
    return
  # make plots folder i.e. make folder extension
  if not os.path.exists(outPath):
      os.makedirs(outPath)

  # Define necessary quantities.
  Ecm = 13

  # Initialize painter
  myPainter = Morisot()
  myPainter.setColourPalette("Teals")
  #myPainter.setEPS(True)
  myPainter.setLabelType(2) # Sets label type i.e. Internal, Work in progress etc.
  # 0 Just ATLAS    
  # 1 "Preliminary"
  # 2 "Internal"
  # 3 "Simulation Preliminary"
  # 4 "Simulation Internal"
  # 5 "Simulation"
  # 6 "Work in Progress"

  # Retrieve search phase inputs
  basicData = inFile.Get("basicData")
  basicBkg = inFile.Get("basicBkg")
  residualHist = inFile.Get("residualHist")
  logLikelihoodPseudoStatHist = inFile.Get("logLikelihoodStatHistNullCase")
  chi2PseudoStatHist = inFile.Get("chi2StatHistNullCase")
  bumpHunterStatHist = inFile.Get("bumpHunterStatHistNullCase")
  bumpHunterTomographyPlot = inFile.Get('bumpHunterTomographyFromPseudoexperiments')
  bumpHunterStatOfFitToData = inFile.Get('bumpHunterStatOfFitToData')

  logLOfFitToDataVec = inFile.Get('logLOfFitToData')
  chi2OfFitToDataVec = inFile.Get('chi2OfFitToData')
  statOfFitToData = inFile.Get('bumpHunterPLowHigh')
  logLOfFitToData = logLOfFitToDataVec[0]
  logLPVal = logLOfFitToDataVec[1]
  chi2OfFitToData = chi2OfFitToDataVec[0]
  chi2PVal = chi2OfFitToDataVec[1]
  bumpHunterStatFitToData = statOfFitToData[0]
  bumpHunterPVal = bumpHunterStatOfFitToData[1]
  bumpLowEdge = statOfFitToData[1]
  bumpHighEdge = statOfFitToData[2]

  print "logL of fit to data is",logLOfFitToData
  print "logL pvalue is",logLPVal
  print "chi2 of fit to data is",chi2OfFitToData
  print "chi2 pvalue is",chi2PVal
  print "bump hunter stat of fit to data is",bumpHunterStatFitToData
  print "bumpLowEdge, bumpHighEdge are",bumpLowEdge,bumpHighEdge
  print "BumpHunter pvalue is",bumpHunterPVal
  print "which is Z value of",GetZVal(bumpHunterPVal,True)

  # Find range
  # Calculate from fit range
  fitRange = inFile.Get("FitRange")
  firstBin = basicData.FindBin(fitRange[0])-1
  lastBin = basicData.FindBin(fitRange[1])+2
  print "firstbin, lastbin: ",firstBin,lastBin
  print "First bin = ",firstBin,": lower edge at",basicData.GetBinLowEdge(firstBin)
  print "Last bin = ",lastBin,": higher edge at" ,basicData.GetBinLowEdge(lastBin)+basicData.GetBinWidth(lastBin)

  # Convert plots into desired final form
  standardbins = basicData.GetXaxis().GetXbins()
  newbins = []#ROOT.TArrayD(standardbins.GetSize())
  for np in range(standardbins.GetSize()) :
    newbins.append(standardbins[np]/1000)

  # Make never versions of old plots
  newbasicdata = ROOT.TH1D("basicData_TeV","basicData_TeV",len(newbins)-1,array('d',newbins))
  newbasicBkg = ROOT.TH1D("basicBkg_TeV","basicBkg_TeV",len(newbins)-1,array('d',newbins))
  newresidualHist = ROOT.TH1D("residualHist_TeV","residualHist_TeV",len(newbins)-1,array('d',newbins))

  for histnew,histold in [[newbasicdata,basicData],[newbasicBkg,basicBkg], [newresidualHist,residualHist]]:
    for bin in range(histnew.GetNbinsX()+2) :
      histnew.SetBinContent(bin,histold.GetBinContent(bin))
      histnew.SetBinError(bin,histold.GetBinError(bin))
 
  # Significances for Todd
  ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist","ToddSignificancesHist",100,-5,5)
  for bin in range(0,newresidualHist.GetNbinsX()+1):
    if bin < firstBin: continue
    if bin > lastBin: continue
    residualValue = newresidualHist.GetBinContent(bin)
    #print residualValue
    ToddSignificancesHist.Fill(residualValue)
  myPainter.drawBasicHistogram(ToddSignificancesHist,-1,-1,"Residuals","Entries","{0}/ToddSignificancesHist".format(outPath))

  # Search phase plots
  myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist,\
            'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin+2,True,\
            bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal)
  myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist,\
            'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin+2,False,\
            bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal)
  myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,\
                              float(logLOfFitToData),logLPVal,0,luminosity,13,\
            'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath))
  myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist,
                              float(chi2OfFitToData),chi2PVal,0,luminosity,13,\
            "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath))
  myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist,
                          float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13,\
            'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath))
  myPainter.drawBumpHunterTomographyPlot(bumpHunterTomographyPlot,"{0}/bumpHunterTomographyPlot".format(outPath))


  ####### Draw Signal Template overlaid on Background###########
  signalFile = ROOT.TFile.Open(signalFileName, "read")
  if not signalFile:
    print signalFileName, " doesn't exist!!!!"
    return

  # setup signal information
  signalTitles = {"QStar": "#it{q}*"}
  signalTypes = ["QStar"]
  signalsMasses = {"QStar":[4000, 5000]}
  signalScalingFactors = {"QStar": 10}
  signalAxes = {"QStar": {"X" : "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]"} }

  for signalType in signalTypes:
    print "in signal",signalType

    signalMasses = signalsMasses[signalType]
    signalMassesTeV = signalsMasses[signalType][:]
    for index in range(len(signalMasses)) :
      signalMassesTeV[index] = signalMasses[index]/1000.0
    print signalMassesTeV

    signalPlotsTeV = []
    legendlistTeV = []
    for mass in signalMasses :
      sigplot = signalFile.Get("mjj_Scaled_"+signalType+"{0}_10fb".format(mass))
      sigplot.SetDirectory(0)  

      sigplottev = newbasicdata.Clone()
      sigplottev.SetName("sigplot_{0}_{1}_TeV".format(signalType,mass))
      for bin in range(sigplottev.GetNbinsX()+2) :
        sigplottev.SetBinContent(bin,sigplot.GetBinContent(bin))
        sigplottev.SetBinError(bin,sigplot.GetBinError(bin))

      #luminosity = float(luminosity)
      sigplottev.Scale(luminosity/10000.)
      sigplotforfitplusbkg = sigplottev.Clone()
      sigplotforfitplusbkg.SetDirectory(0)
      sigplotforfitplusbkg.SetName(sigplottev.GetName()+"_forfitplusbkg_TeV")
      sigplotforfitplusbkg.Scale(signalScalingFactors[signalType])
      signalPlotsTeV.append(sigplotforfitplusbkg)
      thistitle = signalTitles[signalType] + ", {0}= {1} TeV".format(signalAxes[signalType]["X"].split("[GeV]")[0].replace("M","m"),mass/1000.0)
      legendlistTeV.append(thistitle)

      extLastBin = lastBin
      for bin in range(sigplotforfitplusbkg.GetNbinsX()+2) :
        if bin > extLastBin and sigplotforfitplusbkg.GetBinContent(bin) > 0.01 :
          extLastBin = bin
        if sigplotforfitplusbkg.GetBinLowEdge(bin) > 1.3*mass/1000.0 :
          continue
        if extLastBin < lastBin :
          extLastBin = lastBin

    UserScaleText = signalTitles[signalType]
    if signalScalingFactors[signalType] == 1 :
      UserScaleText = signalTitles[signalType]
    else :
      UserScaleText = UserScaleText+",  #sigma #times "+str(signalScalingFactors[signalType])

    outputName = outPath+"FancyFigure1_"+signalType
    myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin+5,\
                   True, bumpLowEdge/1000,bumpHighEdge/1000,\
                   True,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])
    outputName = outPath+"FancyFigure1_"+signalType+"_noBump"
    myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin+5,\
                   False, bumpLowEdge/1000,bumpHighEdge/1000,\
                   True,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])

  inFile.Close()
  print "Done."
doAlternate = True

luminosity = 9500

lowfit = 203
highfit = 1493

###########################

# make plots folder i.e. make folder extension
if not os.path.exists(folder):
    os.makedirs(folder)

# Initialize painter
myPainter = Morisot()
myPainter.setColourPalette("Teals")
myPainter.setLabelType(4)
myPainter.setEPS(False)

# Get search phase result
searchInputFile = ROOT.TFile.Open(filenametemp, "READ")

# Retrieve search phase inputs
basicData = searchInputFile.Get("basicData")
basicBkgFrom4ParamFit = searchInputFile.Get("basicBkgFrom4ParamFit")

nomPlus1 = searchInputFile.Get("nominalBkgFromFit_plus1Sigma")
nomMinus1 = searchInputFile.Get("nominalBkgFromFit_minus1Sigma")

if doAlternate:
    valueNewFuncErrDirected = searchInputFile.Get(
def main():

    # User controlled arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("--inFileName",       type=str,  default="", help="The path to the input file from SearchPhase")
    parser.add_argument("--outPath",       type=str,  default="./plotting/SearchPhase/plots/", help="The path prefix (directory) where you want the output plots")
    parser.add_argument("--lumi",       type=float,  default=1, help="Luminosity in fb-1")
    parser.add_argument("--doAlternate",     action='store_true', help="Compare Nominal and Alternate Fit")
    parser.add_argument("--overlaidSignal", action='store_true', help="Overlaid Signal on Background")
    parser.add_argument("--signalFileName", type=str, default="", help="Signal histogram overlaid on background")
    parser.add_argument("--drawMCComparison", action='store_true', help="Draw the comparison between data and MC")
    parser.add_argument("--mcFileName", type=str, default="", help="MC File Name")

    args = parser.parse_args()
    inFileName       = args.inFileName
    outPath       = args.outPath
    luminosity = 1000*args.lumi
    doAlternate = args.doAlternate
    overlaidSignal = args.overlaidSignal
    signalFileName = args.signalFileName
    drawMCComparison = args.drawMCComparison
    mcFileName = args.mcFileName
    
    print "==================================="
    print "Executing Run_SearchPhase.py with :"
    print "inFileName       : ",inFileName      
    print "outPath       : ",outPath
    print "Lumi       : ", args.lumi
    print "doAlternate: ", doAlternate
    print "overlaidSignal: ", overlaidSignal
    if overlaidSignal: 
      print " signalFileName: ", signalFileName
    print "drawMCComparison: ", drawMCComparison
    print "mcFileName: ", mcFileName
    print "==================================="

    # Get input (the rootfile name should match that specified in the SearchPhase.config file)
    searchInputFile = ROOT.TFile(inFileName, "READ")

    # make plots folder i.e. make folder extension
    if not os.path.exists(outPath):
        os.makedirs(outPath)

    # Define necessary quantities.
    Ecm = 13

    # Get input
    doStatSearch = False
    #doAlternate = True # You can use this if you included the alternate fit function in the search phase

    # Initialize painter
    myPainter = Morisot()
    myPainter.setColourPalette("Teals")
    #myPainter.setEPS(True)
    myPainter.setLabelType(2) # Sets label type i.e. Internal, Work in progress etc.
                              # See below for label explanation

    # 0 Just ATLAS    
    # 1 "Preliminary"
    # 2 "Internal"
    # 3 "Simulation Preliminary"
    # 4 "Simulation Internal"
    # 5 "Simulation"
    # 6 "Work in Progress"

    # Retrieve search phase inputs
    basicData = searchInputFile.Get("basicData")
    basicBkg = searchInputFile.Get("basicBkgFrom4ParamFit")
    #normalizedData = searchInputFile.Get("normalizedData")
    #normalizedBkgFrom4ParamFit = searchInputFile.Get("normalizedBkgFrom4ParamFit")
    residualHist = searchInputFile.Get("residualHist")
    relativeDiffHist = searchInputFile.Get("relativeDiffHist")
    sigOfDiffHist = searchInputFile.Get("sigOfDiffHist")
    logLikelihoodPseudoStatHist = searchInputFile.Get("logLikelihoodStatHistNullCase")
    chi2PseudoStatHist = searchInputFile.Get("chi2StatHistNullCase")
    bumpHunterStatHist = searchInputFile.Get("bumpHunterStatHistNullCase")
    #theFitFunction = searchInputFile.Get('theFitFunction')
    bumpHunterTomographyPlot = searchInputFile.Get('bumpHunterTomographyFromPseudoexperiments')
    bumpHunterStatOfFitToData = searchInputFile.Get('bumpHunterStatOfFitToData')

    # nominal background +- statistical uncertainty(uncertainty from fitting parameters)
    nomPlus1 = searchInputFile.Get("nominalBkgFromFit_plus1Sigma")
    nomMinus1 = searchInputFile.Get("nominalBkgFromFit_minus1Sigma")

    #nominal background +- uncertainties from fitting function choice
    if doAlternate :
      alternateBkg = searchInputFile.Get("alternateFitOnRealData")
      nomWithNewFuncErrSymm = searchInputFile.Get("nomOnDataWithSymmetricRMSScaleFuncChoiceErr")
      valueNewFuncErrDirected = searchInputFile.Get("nomOnDataWithDirectedRMSScaleFuncChoiceErr")

    logLOfFitToDataVec = searchInputFile.Get('logLOfFitToData')
    chi2OfFitToDataVec = searchInputFile.Get('chi2OfFitToData')
    statOfFitToData = searchInputFile.Get('bumpHunterPLowHigh')
    logLOfFitToData = logLOfFitToDataVec[0]
    logLPVal = logLOfFitToDataVec[1]
    chi2OfFitToData = chi2OfFitToDataVec[0]
    chi2PVal = chi2OfFitToDataVec[1]
    bumpHunterStatFitToData = statOfFitToData[0]
    bumpHunterPVal = bumpHunterStatOfFitToData[1]
    bumpLowEdge = statOfFitToData[1]
    bumpHighEdge = statOfFitToData[2]

    #NDF = searchInputFile.Get('NDF')[0]
    #fitparams = searchInputFile.Get('fittedParameters')

    print "logL of fit to data is",logLOfFitToData
    print "logL pvalue is",logLPVal
    print "chi2 of fit to data is",chi2OfFitToData
    #print "NDF is",NDF
    #print "chi2/NDF is",chi2OfFitToData/NDF
    print "chi2 pvalue is",chi2PVal
    print "bump hunter stat of fit to data is",bumpHunterStatFitToData
    print "bumpLowEdge, bumpHighEdge are",bumpLowEdge,bumpHighEdge
    print "BumpHunter pvalue is",bumpHunterPVal
    print "which is Z value of",GetZVal(bumpHunterPVal,True)
    #print "Fitted parameters were:",fitparams

    # Find range
    firstBin = 1000
    lastBin = basicData.GetNbinsX()
    print lastBin
    while (basicData.GetBinContent(lastBin)==0 and lastBin > 0) :
      lastBin = lastBin - 1

    # Calculate from fit range
    fitRange = searchInputFile.Get("FitRange")
    firstBin = basicData.FindBin(fitRange[0])
    lastBin = basicData.FindBin(fitRange[1])
    print "New firstbin, lastbin",firstBin,lastBin

    # Convert plots into desired final form
    standardbins = basicData.GetXaxis().GetXbins()
    newbins = []#ROOT.TArrayD(standardbins.GetSize())
    for np in range(standardbins.GetSize()) :
      newbins.append(standardbins[np]/1000)

    # Make new versions of old plots
    newbasicdata = ROOT.TH1D("basicData_TeV","basicData_TeV",len(newbins)-1,array('d',newbins))
    newbasicBkg = ROOT.TH1D("basicBkg_TeV","basicBkg_TeV",len(newbins)-1,array('d',newbins))
    newresidualHist = ROOT.TH1D("residualHist_TeV","residualHist_TeV",len(newbins)-1,array('d',newbins))
    newrelativeDiffHist = ROOT.TH1D("relativeDiffHist_TeV","relativeDiffHist_TeV",len(newbins)-1,array('d',newbins))
    newsigOfDiffHist = ROOT.TH1D("sigOfDiffHist_TeV","sigOfDiffHist_TeV",len(newbins)-1,array('d',newbins))

    newNomPlus1= ROOT.TH1D("nomPlus1_TeV","nomPlus1_TeV",len(newbins)-1,array('d',newbins))
    newNomMinus1= ROOT.TH1D("nomMinus1_TeV","nomMinus1_TeV",len(newbins)-1,array('d',newbins))

    newAlternateBkg = ROOT.TH1D("alternateBkg_TeV","alternateBkg_TeV",len(newbins)-1,array('d',newbins))
    newnomWithNewFuncErrSymm = ROOT.TH1D("nomWithNewFuncErrSymm_TeV","nomWithNewFuncErrSymm_TeV",len(newbins)-1,array('d',newbins))
    newValueNewFuncErrDirected= ROOT.TH1D("nomWithNewFuncErrDirected_TeV","nomWithNewFuncErrDirected_TeV",len(newbins)-1,array('d',newbins))

    for histnew,histold in [[newbasicdata,basicData],[newbasicBkg,basicBkg],\
                            [newNomPlus1,nomPlus1],[newNomMinus1,nomMinus1], \
                            [newresidualHist,residualHist],[newrelativeDiffHist,relativeDiffHist],\
                            [newsigOfDiffHist,sigOfDiffHist]] :
      for bin in range(histnew.GetNbinsX()+2) :
        histnew.SetBinContent(bin,histold.GetBinContent(bin))
        histnew.SetBinError(bin,histold.GetBinError(bin))
 
    if doAlternate:
      icount=0
      for histnew,histold in [[newAlternateBkg,alternateBkg], [newnomWithNewFuncErrSymm,nomWithNewFuncErrSymm],\
                              [newValueNewFuncErrDirected,valueNewFuncErrDirected]] :
     
        print "Count : ",icount
        print histnew.GetName()
        print histold.GetName()
        icount+=1
      
        for bin in range(histnew.GetNbinsX()+2) :
          histnew.SetBinContent(bin,histold.GetBinContent(bin))
          histnew.SetBinError(bin,histold.GetBinError(bin))

    # Significances for Todd
    ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist","ToddSignificancesHist",100,-5,5)
    for bin in range(0,newresidualHist.GetNbinsX()+1):
      if bin < firstBin: continue
      if bin > lastBin: continue
      residualValue = newresidualHist.GetBinContent(bin)
      ToddSignificancesHist.Fill(residualValue)

    # Search phase plots
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath), luminosity,13,fitRange[0],fitRange[1], firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nologx'.format(outPath), luminosity,13,fitRange[0],fitRange[1], firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],False,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump'.format(outPath), luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin+2,False,bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkg,newresidualHist, 'm_{jj} [TeV]','Events','Significance','{0}/figure1_nobump_nologx'.format(outPath), luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],False,False,[],True,bumpHunterPVal)
    myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,float(logLOfFitToData),logLPVal,0,luminosity,13, 'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath))
    myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist,float(chi2OfFitToData),chi2PVal,0,luminosity,13, "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath))
    myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist,float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13, 'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath))
    myPainter.drawBumpHunterTomographyPlot(bumpHunterTomographyPlot,"{0}/bumpHunterTomographyPlot".format(outPath))

    # Various significance plots
    myPainter.drawBasicHistogram(ToddSignificancesHist,-1,-1,"Residuals","Entries","{0}/ToddSignificancesHist".format(outPath))
    myPainter.drawSignificanceHistAlone(newrelativeDiffHist,"m_{jj} [TeV]","(D - B)/B","{0}/significanceonlyplot".format(outPath))
    myPainter.drawSignificanceHistAlone(newsigOfDiffHist,"m_{jj} [TeV]","(D - B)/#sqrt{Derr^{2}+Berr^{2}}","{0}/sigofdiffonlyplot".format(outPath))

    # Now to make the one comparing uncertainties
    placeHolderNom = newbasicBkg.Clone()
    placeHolderNom.SetName("placeHolderNom")
    nomPlusSymmFuncErr = newbasicBkg.Clone()
    nomPlusSymmFuncErr.SetName("nomPlusNewFuncErr")
    nomMinusSymmFuncErr = newbasicBkg.Clone()
    nomMinusSymmFuncErr.SetName("nomMinusNewFuncErr")
    for bin in range(nomPlusSymmFuncErr.GetNbinsX()+2) :
      nomPlusSymmFuncErr.SetBinContent(bin,newnomWithNewFuncErrSymm.GetBinContent(bin) + newnomWithNewFuncErrSymm.GetBinError(bin))
      nomMinusSymmFuncErr.SetBinContent(bin,newnomWithNewFuncErrSymm.GetBinContent(bin) - newnomWithNewFuncErrSymm.GetBinError(bin))

    if doAlternate:
      myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Fit uncertainty","Function choice"],"{0}/compareFitQualityAndAlternateFit".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False)
      myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Function choice","Alternate function"],"{0}/compareFitChoiceAndAlternateFit".format(outPath),True,[[nomPlusSymmFuncErr,nomMinusSymmFuncErr],[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False)
      myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Fit uncertainty","Function choice"],"{0}/compareFitQualtiyAndFitChoice".format(outPath),True,[[newNomPlus1,newNomMinus1],[nomPlusSymmFuncErr,nomMinusSymmFuncErr]],firstBin,lastBin,True,True,True,False,False)
      myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical fit uncertainty","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],firstBin,lastBin,True,True,True,False,False)

      # Overlay nominal and alternate fit functions
      myPainter.drawDataWithFitAsHistogram(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Alternate function"],"{0}/compareFitChoices".format(outPath),True,[[placeHolderNom,newAlternateBkg]],firstBin,lastBin,True,True,True,False,False)

      # Make a ratio histogram for bottom plot.
      altFitRatio = ROOT.TH1D("altFitRatio","altFitRatio",len(newbins)-1,array('d',newbins))
      for bin in range(0,altFitRatio.GetNbinsX()+1) :
        if newbasicBkg.GetBinContent(bin) == 0 :
          altFitRatio.SetBinContent(bin,0)
        else :
          altFitRatio.SetBinContent(bin,(valueNewFuncErrDirected.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin))

      # Make a ratio histogram for paper plot.
      PlusNomRatio = ROOT.TH1D("PlusNomRatio","PlusNomRatio",len(newbins)-1,array('d',newbins))
      for bin in range(0,PlusNomRatio.GetNbinsX()+1) :
        if newbasicBkg.GetBinContent(bin) == 0 :
          PlusNomRatio.SetBinContent(bin,0)
        else :
          PlusNomRatio.SetBinContent(bin,(newNomPlus1.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin))
      MinusNomRatio = ROOT.TH1D("MinusNomRatio","MinusNomRatio",len(newbins)-1,array('d',newbins))
      for bin in range(0,MinusNomRatio.GetNbinsX()+1) :
        if newbasicBkg.GetBinContent(bin) == 0 :
          MinusNomRatio.SetBinContent(bin,0)
        else :
          MinusNomRatio.SetBinContent(bin,(newNomMinus1.GetBinContent(bin)-newbasicBkg.GetBinContent(bin))/newbasicBkg.GetBinContent(bin))

      myPainter.drawDataWithFitAsHistogramAndResidual(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatio".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin,True,True,True,False,False,True,False,True,bumpHunterPVal,True,fitRange[0],fitRange[1])
     
      myPainter.drawDataWithFitAsHistogramAndResidualPaper(newbasicdata,newbasicBkg,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatioPaper".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin,True,True,True,False,False)
     
      myPainter.drawMultipleFitsAndResiduals(newbasicdata,[newbasicBkg,newValueNewFuncErrDirected],[altFitRatio],["Nominal fit","Function choice"],"m_{jj} [TeV]","Events",["(alt-nom)/nom"],"{0}/directedFuncChoiceVersusNominal_withRatio".format(outPath),luminosity,13,firstBin,lastBin)

    ####### Draw Signal Template overlaid on Background###########
    if overlaidSignal:
      signalFile = ROOT.TFile.Open(signalFileName, "read")
      if not signalFile:
        print signalFileName, " doesn't exist!!!!"
        return
      # setup signal information
      #signalTitles = {"QStar": "#it{q}*"}
      #signalTypes = ["QStar"]
      #signalsMasses = {"QStar":[4000, 5000]}
      #signalScalingFactors = {"QStar": 0.1}
      #signalAxes = {"QStar": {"X" : "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]"} }
      signalTitles = {"DMZprime": "DM #it{Z}'"}
      signalTypes = ["DMZprime"]
      signalsMasses = {"DMZprime":[4000, 5000]}
      signalScalingFactors = {"DMZprime": 1000}
      signalAxes = {"DMZprime": {"X" : "M_{#it{q}*} [GeV]", "Y": "#sigma #times #it{A} #times BR [pb]"} }

      for signalType in signalTypes:
        print "in signal",signalType
        signalMasses = signalsMasses[signalType]
        signalMassesTeV = signalsMasses[signalType][:]
        for index in range(len(signalMasses)) :
          signalMassesTeV[index] = signalMasses[index]/1000.0
        print signalMassesTeV

        signalPlotsTeV = []
        legendlistTeV = []
        for mass in signalMasses :
          #sigplot = signalFile.Get("h_mjj_{0}".format(mass))
          sigplot = signalFile.Get("{0}_{1}".format(signalType, mass))
          sigplot.SetDirectory(0)
          sigplottev = newbasicdata.Clone()
          sigplottev.SetName("sigplot_{0}_{1}_TeV".format(signalType,mass))
          for bins in range(sigplot.GetNbinsX()+2) :
            for bin in range(sigplottev.GetNbinsX()+2) :
              if sigplot.GetBinLowEdge(bins)/1000.==sigplottev.GetBinLowEdge(bin) :
                sigplottev.SetBinContent(bin,sigplot.GetBinContent(bins))
                sigplottev.SetBinError(bin,sigplot.GetBinError(bins))
          sigplotforfitplusbkg = sigplottev.Clone()
          sigplotforfitplusbkg.SetDirectory(0)
          sigplotforfitplusbkg.SetName(sigplottev.GetName()+"_forfitplusbkg_TeV")
          sigplotforfitplusbkg.Scale(signalScalingFactors[signalType])
          signalPlotsTeV.append(sigplotforfitplusbkg)
          thistitle = signalTitles[signalType] + ", {0}= {1} TeV".format(signalAxes[signalType]["X"].split("[GeV]")[0].replace("M","m"),mass/1000.0)
          legendlistTeV.append(thistitle)

          extLastBin = lastBin
          for bin in range(sigplotforfitplusbkg.GetNbinsX()) :
            if bin > extLastBin and sigplotforfitplusbkg.GetBinContent(bin) > 0.01 :
              extLastBin = bin
            if sigplotforfitplusbkg.GetBinLowEdge(bin) > 1.3*mass/1000.0 :
              continue
            if extLastBin < lastBin :
              extLastBin = lastBin

      UserScaleText = signalTitles[signalType]
      if signalScalingFactors[signalType] == 1 :
        UserScaleText = signalTitles[signalType]
      else :
        UserScaleText = UserScaleText+",  #sigma #times "+str(signalScalingFactors[signalType])
      outputName = outPath+"FancyFigure1_"+signalType
      myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin,\
                   True, bumpLowEdge/1000,bumpHighEdge/1000,\
                   True,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])
      outputName = outPath+"FancyFigure1_"+signalType+"_nologx"
      myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin,\
                   True, bumpLowEdge/1000,bumpHighEdge/1000,\
                   False,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])
      outputName = outPath+"FancyFigure1_"+signalType+"_noBump"
      myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin,\
                   False, bumpLowEdge/1000,bumpHighEdge/1000,\
                   True,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])
      outputName = outPath+"FancyFigure1_"+signalType+"_noBump_nologx"
      myPainter.drawDataAndFitWithSignalsOverSignificances(newbasicdata,newbasicBkg, None,\
                   newresidualHist,signalPlotsTeV, None, signalMassesTeV,legendlistTeV,\
                   "m_{jj} [TeV]","Events","","Significance ", outputName,luminosity,\
                   Ecm, firstBin,extLastBin,\
                   False, bumpLowEdge/1000,bumpHighEdge/1000,\
                   False,False,True,UserScaleText,True,bumpHunterPVal, True, \
                   fitRange[0], fitRange[1])

      ###############################
      # Draw the comparison between data and MC in the bottom panel
      if drawMCComparison:
        mcFile = ROOT.TFile(mcFileName, "read") ;
        if not mcFile:
          print "Can not open: ", mcFileName
          return 
        mchist_nominal = mcFile.Get("djet_mjj_nominal")
        mchist_jesup = mcFile.Get("djet_mjj_JES_up")
        mchist_jesdown = mcFile.Get("djet_mjj_JES_down")
        newmchist_nominal=ROOT.TH1D("djet_mjj_nominal_TeV","djet_mjj_nominal_TeV",len(newbins)-1,array('d',newbins))
        newmchist_jesup=ROOT.TH1D("djet_mjj_jesup_TeV","djet_mjj_jesup_TeV",len(newbins)-1,array('d',newbins))
        newmchist_jesdown=ROOT.TH1D("djet_mjj_jesdown_TeV","djet_mjj_jesdown_TeV",len(newbins)-1,array('d',newbins))
        for iBin1 in range(1, newmchist_nominal.GetNbinsX()+1):
          for iBin2 in range(1, mchist_nominal.GetNbinsX()+1):
            if newmchist_nominal.GetBinLowEdge(iBin1)*1000==mchist_nominal.GetBinLowEdge(iBin2):
              newmchist_nominal.SetBinContent(iBin1, mchist_nominal.GetBinContent(iBin2))
              newmchist_nominal.SetBinError(iBin1, mchist_nominal.GetBinError(iBin2))
              continue
        for iBin1 in range(1, newmchist_jesup.GetNbinsX()+1):
          for iBin2 in range(1, mchist_jesup.GetNbinsX()+1):
            if newmchist_jesup.GetBinLowEdge(iBin1)*1000==mchist_jesup.GetBinLowEdge(iBin2):
              newmchist_jesup.SetBinContent(iBin1, mchist_jesup.GetBinContent(iBin2))
              newmchist_jesup.SetBinError(iBin1, mchist_jesup.GetBinError(iBin2))
              continue
        for iBin1 in range(1, newmchist_jesdown.GetNbinsX()+1):
          for iBin2 in range(1, mchist_jesdown.GetNbinsX()+1):
            if newmchist_jesdown.GetBinLowEdge(iBin1)*1000==mchist_jesdown.GetBinLowEdge(iBin2):
              newmchist_jesdown.SetBinContent(iBin1, mchist_jesdown.GetBinContent(iBin2))
              newmchist_jesdown.SetBinError(iBin1, mchist_jesdown.GetBinError(iBin2))
              continue
      
        tmpRatioHist = newbasicdata.Clone()
        tmpRatioHist.SetMarkerColor(ROOT.kBlack)
        tmpRatioHist.Add(newmchist_nominal,-1)
        tmpRatioHist.Divide(newmchist_nominal)
        ## If data is 0 then there should be no ratio drawn
        for iBin in range(1, tmpRatioHist.GetNbinsX()+1):
          if newbasicdata.GetBinContent(iBin) == 0:
            tmpRatioHist.SetBinContent(iBin, 0)
            tmpRatioHist.SetBinError(iBin, 0)

        UpDownRatioHists = []
        if mchist_jesup.GetEntries() >= 0:
          tmpJESRatioHist = newmchist_jesup
          tmpJESRatioHist.Add( newmchist_nominal, -1. )
          tmpJESRatioHist.Divide( newmchist_nominal )
          tmpJESRatioHist.SetMarkerColorAlpha( ROOT.kBlue,0.15)
          tmpJESRatioHist.SetLineColorAlpha( ROOT.kBlue,0.15)
          tmpJESRatioHist.SetFillColorAlpha( ROOT.kBlue, 0.15)
          tmpJESRatioHist.SetFillStyle(1001)
          UpDownRatioHists.append(tmpJESRatioHist)
        if mchist_jesdown.GetEntries() >= 0:
          tmpJESRatioHist = newmchist_jesdown
          tmpJESRatioHist.Add( newmchist_nominal, -1. )
          tmpJESRatioHist.Divide( newmchist_nominal )
          tmpJESRatioHist.SetMarkerColorAlpha( ROOT.kBlue,0.15)
          tmpJESRatioHist.SetLineColorAlpha( ROOT.kBlue,0.15)
          tmpJESRatioHist.SetFillColorAlpha( ROOT.kBlue, 0.15)
          tmpJESRatioHist.SetFillStyle(1001)
          UpDownRatioHists.append(tmpJESRatioHist)
        outputName = outPath+"FancyFigure1_"+signalType+"_WithMCRatio"
        myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None,\
                     newresidualHist, signalPlotsTeV, [], signalMassesTeV,legendlistTeV,\
                     "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\
                     outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\
                     True,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\
                     newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1])
        outputName = outPath+"FancyFigure1_"+signalType+"_WithMCRatio_nologx"
        myPainter.drawDataAndFitWithSignalsOverSignificancesWithMCRatio(newbasicdata,newbasicBkg,None, \
                     newresidualHist, signalPlotsTeV, [],signalMassesTeV,legendlistTeV, \
                     "m_{jj} [TeV]","Events","#frac{Data-MC}{MC}","Significance",\
                     outputName,luminosity,Ecm,firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,\
                     False,False,False, UserScaleText,True,bumpHunterPVal,True,fitRange[0],fitRange[1],\
                     newmchist_nominal,tmpRatioHist,UpDownRatioHists[0],UpDownRatioHists[1])

    searchInputFile.Close()
    del searchInputFile

    print "Done."
def main():

    # User controlled arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("--inFileName",
                        type=str,
                        default="",
                        help="The path to the input file from SearchPhase")
    parser.add_argument(
        "--outPath",
        type=str,
        default="./plotting/SearchPhase/plots/",
        help="The path prefix (directory) where you want the output plots")
    parser.add_argument("--lumi", type=float, default=1, help="Luminosity")

    args = parser.parse_args()
    inFileName = args.inFileName
    outPath = args.outPath

    print "==================================="
    print "Executing Run_SearchPhase.py with :"
    print "inFileName       : ", inFileName
    print "outPath       : ", outPath
    print "Lumi       : ", args.lumi
    print "==================================="

    # Get input (the rootfile name should match that specified in the SearchPhase.config file)
    searchInputFile = ROOT.TFile(inFileName, "READ")

    # make plots folder i.e. make folder extension
    if not os.path.exists(outPath):
        os.makedirs(outPath)

    # Define necessary quantities.
    luminosity = 1000 * args.lumi
    Ecm = 13

    # Get input
    doStatSearch = False
    doAlternate = True  # You can use this if you included the alternate fit function in the search phase

    # Initialize painter
    myPainter = Morisot()
    myPainter.setColourPalette("Teals")
    #myPainter.setEPS(True)
    myPainter.setLabelType(
        2)  # Sets label type i.e. Internal, Work in progress etc.
    # See below for label explanation

    # 0 Just ATLAS
    # 1 "Preliminary"
    # 2 "Internal"
    # 3 "Simulation Preliminary"
    # 4 "Simulation Internal"
    # 5 "Simulation"
    # 6 "Work in Progress"

    # Retrieve search phase inputs
    basicData = searchInputFile.Get("basicData")
    normalizedData = searchInputFile.Get("normalizedData")
    basicBkgFrom4ParamFit = searchInputFile.Get("basicBkgFrom4ParamFit")
    normalizedBkgFrom4ParamFit = searchInputFile.Get(
        "normalizedBkgFrom4ParamFit")
    residualHist = searchInputFile.Get("residualHist")
    relativeDiffHist = searchInputFile.Get("relativeDiffHist")
    sigOfDiffHist = searchInputFile.Get("sigOfDiffHist")
    logLikelihoodPseudoStatHist = searchInputFile.Get(
        "logLikelihoodStatHistNullCase")
    chi2PseudoStatHist = searchInputFile.Get("chi2StatHistNullCase")
    bumpHunterStatHist = searchInputFile.Get("bumpHunterStatHistNullCase")
    theFitFunction = searchInputFile.Get('theFitFunction')
    bumpHunterTomographyPlot = searchInputFile.Get(
        'bumpHunterTomographyFromPseudoexperiments')
    bumpHunterStatOfFitToData = searchInputFile.Get(
        'bumpHunterStatOfFitToData')

    if doAlternate:
        searchInputFile.ls()
        alternateBkg = searchInputFile.Get("alternateFitOnRealData")
        nomPlus1 = searchInputFile.Get("nominalBkgFromFit_plus1Sigma")
        nomMinus1 = searchInputFile.Get("nominalBkgFromFit_minus1Sigma")
        nomWithNewFuncErrSymm = searchInputFile.Get(
            "nomOnDataWithSymmetricRMSScaleFuncChoiceErr")
        valueNewFuncErrDirected = searchInputFile.Get(
            "nomOnDataWithDirectedRMSScaleFuncChoiceErr")

    logLOfFitToDataVec = searchInputFile.Get('logLOfFitToData')
    chi2OfFitToDataVec = searchInputFile.Get('chi2OfFitToData')
    statOfFitToData = searchInputFile.Get('bumpHunterPLowHigh')
    logLOfFitToData = logLOfFitToDataVec[0]
    logLPVal = logLOfFitToDataVec[1]
    chi2OfFitToData = chi2OfFitToDataVec[0]
    chi2PVal = chi2OfFitToDataVec[1]
    bumpHunterStatFitToData = statOfFitToData[0]
    bumpHunterPVal = bumpHunterStatOfFitToData[1]
    bumpLowEdge = statOfFitToData[1]
    bumpHighEdge = statOfFitToData[2]

    #NDF = searchInputFile.Get('NDF')[0]

    fitparams = searchInputFile.Get('fittedParameters')

    print "logL of fit to data is", logLOfFitToData
    print "logL pvalue is", logLPVal
    print "chi2 of fit to data is", chi2OfFitToData
    #print "NDF is",NDF
    #print "chi2/NDF is",chi2OfFitToData/NDF
    print "chi2 pvalue is", chi2PVal
    print "bump hunter stat of fit to data is", bumpHunterStatFitToData
    print "bumpLowEdge, bumpHighEdge are", bumpLowEdge, bumpHighEdge
    print "BumpHunter pvalue is", bumpHunterPVal
    print "which is Z value of", GetZVal(bumpHunterPVal, True)

    print "Fitted parameters were:", fitparams

    # Find range
    firstBin = 1000
    lastBin = basicData.GetNbinsX()
    while (basicData.GetBinContent(lastBin) == 0 and lastBin > 0):
        lastBin -= 1
    if (firstBin > lastBin):
        firstBin = 1
        lastBin = basicData.GetNbinsX()
    print "First bin = ", firstBin, ": lower edge at", basicData.GetBinLowEdge(
        firstBin)

    # Calculate from fit range
    fitRange = searchInputFile.Get("FitRange")
    firstBin = basicData.FindBin(fitRange[0]) - 1
    lastBin = basicData.FindBin(fitRange[1])
    print "New firstbin, lastbin", firstBin, lastBin

    #firstBin = basicData.FindBin(1100)
    #print "and another firstbin is",firstBin

    # Convert plots into desired final form
    standardbins = basicData.GetXaxis().GetXbins()
    newbins = []  #ROOT.TArrayD(standardbins.GetSize())
    for np in range(standardbins.GetSize()):
        newbins.append(standardbins[np] / 1000)

    # Make never versions of old plots
    newbasicdata = ROOT.TH1D("basicData_TeV", "basicData_TeV",
                             len(newbins) - 1, array('d', newbins))
    newbasicBkgFrom4ParamFit = ROOT.TH1D("basicBkgFrom4ParamFit_TeV",
                                         "basicBkgFrom4ParamFit_TeV",
                                         len(newbins) - 1, array('d', newbins))
    newresidualHist = ROOT.TH1D("residualHist_TeV", "residualHist_TeV",
                                len(newbins) - 1, array('d', newbins))
    newrelativeDiffHist = ROOT.TH1D("relativeDiffHist_TeV",
                                    "relativeDiffHist_TeV",
                                    len(newbins) - 1, array('d', newbins))
    newsigOfDiffHist = ROOT.TH1D("sigOfDiffHist_TeV", "sigOfDiffHist_TeV",
                                 len(newbins) - 1, array('d', newbins))

    newAlternateBkg = ROOT.TH1D("alternateBkg_TeV", "alternateBkg_TeV",
                                len(newbins) - 1, array('d', newbins))
    newNomPlus1 = ROOT.TH1D("nomPlus1_TeV", "nomPlus1_TeV",
                            len(newbins) - 1, array('d', newbins))
    newNomMinus1 = ROOT.TH1D("nomMinus1_TeV", "nomMinus1_TeV",
                             len(newbins) - 1, array('d', newbins))
    newnomWithNewFuncErrSymm = ROOT.TH1D("nomWithNewFuncErrSymm_TeV",
                                         "nomWithNewFuncErrSymm_TeV",
                                         len(newbins) - 1, array('d', newbins))
    newValueNewFuncErrDirected = ROOT.TH1D("nomWithNewFuncErrDirected_TeV",
                                           "nomWithNewFuncErrDirected_TeV",
                                           len(newbins) - 1,
                                           array('d', newbins))

    for histnew,histold in [[newbasicdata,basicData],[newbasicBkgFrom4ParamFit,basicBkgFrom4ParamFit],\
            [newresidualHist,residualHist],[newrelativeDiffHist,relativeDiffHist],[newsigOfDiffHist,sigOfDiffHist]] :
        for bin in range(histnew.GetNbinsX() + 2):
            histnew.SetBinContent(bin, histold.GetBinContent(bin))
            histnew.SetBinError(bin, histold.GetBinError(bin))

    # Significances for Todd
    ToddSignificancesHist = ROOT.TH1D("ToddSignificancesHist",
                                      "ToddSignificancesHist", 100, -5, 5)
    for bin in range(0, newresidualHist.GetNbinsX() + 1):
        if bin < firstBin: continue
        if bin > lastBin: continue
        residualValue = newresidualHist.GetBinContent(bin)
        #print residualValue
        ToddSignificancesHist.Fill(residualValue)
    myPainter.drawBasicHistogram(ToddSignificancesHist, -1, -1, "Residuals",
                                 "Entries",
                                 "{0}/ToddSignificancesHist".format(outPath))

    # Search phase plots
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\
            'm_{jj} [TeV]','Events','Significance','{0}/figure1'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],True,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\
            'm_{jj} [TeV]','Events','Significance','{0}/figure1_nologx'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,True,bumpLowEdge/1000.0,bumpHighEdge/1000.0,[],False,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\
            'm_{jj} [TeV]','Prescale-weighted events','Significance','{0}/figure1_nobump'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],True,False,[],True,bumpHunterPVal)
    myPainter.drawDataAndFitOverSignificanceHist(newbasicdata,newbasicBkgFrom4ParamFit,newresidualHist,\
            'm_{jj} [TeV]','Prescale-weighted events','Significance','{0}/figure1_nobump_nologx'.format(outPath),\
            luminosity,13,fitRange[0],fitRange[1],firstBin,lastBin,False,bumpLowEdge,bumpHighEdge,[],False,False,[],True,bumpHunterPVal)
    myPainter.drawPseudoExperimentsWithObservedStat(logLikelihoodPseudoStatHist,float(logLOfFitToData),logLPVal,0,luminosity,13,\
            'logL statistic','Pseudo-exeperiments',"{0}/logLStatPlot".format(outPath))
    myPainter.drawPseudoExperimentsWithObservedStat(chi2PseudoStatHist,float(chi2OfFitToData),chi2PVal,0,luminosity,13,\
            "#chi^{2}",'Pseudo-exeperiments',"{0}/chi2StatPlot".format(outPath))
    myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatHist,float(bumpHunterStatFitToData),bumpHunterPVal,0,luminosity,13,\
            'BumpHunter','Pseudo-exeperiments',"{0}/bumpHunterStatPlot".format(outPath))
    myPainter.drawBumpHunterTomographyPlot(
        bumpHunterTomographyPlot,
        "{0}/bumpHunterTomographyPlot".format(outPath))

    # Various significance plots
    myPainter.drawSignificanceHistAlone(
        newrelativeDiffHist, "m_{jj} [TeV]", "(D - B)/B",
        "{0}/significanceonlyplot".format(outPath))
    myPainter.drawSignificanceHistAlone(
        newsigOfDiffHist, "m_{jj} [TeV]", "(D - B)/#sqrt{Derr^{2}+Berr^{2}}",
        "{0}/sigofdiffonlyplot".format(outPath))

    # Now to make the one comparing uncertainties
    placeHolderNom = newbasicBkgFrom4ParamFit.Clone()
    placeHolderNom.SetName("placeHolderNom")
    nomPlusSymmFuncErr = newbasicBkgFrom4ParamFit.Clone()
    nomPlusSymmFuncErr.SetName("nomPlusNewFuncErr")
    nomMinusSymmFuncErr = newbasicBkgFrom4ParamFit.Clone()
    nomMinusSymmFuncErr.SetName("nomMinusNewFuncErr")
    for bin in range(nomPlusSymmFuncErr.GetNbinsX() + 2):
        nomPlusSymmFuncErr.SetBinContent(
            bin,
            newnomWithNewFuncErrSymm.GetBinContent(bin) +
            newnomWithNewFuncErrSymm.GetBinError(bin))
        nomMinusSymmFuncErr.SetBinContent(
            bin,
            newnomWithNewFuncErrSymm.GetBinContent(bin) -
            newnomWithNewFuncErrSymm.GetBinError(bin))

    myPainter.drawDataWithFitAsHistogram(
        newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]",
        "Events", ["Data", "Fit", "Fit uncertainty", "Function choice"],
        "{0}/compareFitQualityAndAlternateFit".format(outPath), True,
        [[newNomPlus1, newNomMinus1], [placeHolderNom, newAlternateBkg]],
        firstBin, lastBin + 2, True, True, True, False, False)
    myPainter.drawDataWithFitAsHistogram(
        newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]",
        "Events", ["Data", "Fit", "Function choice", "Alternate function"],
        "{0}/compareFitChoiceAndAlternateFit".format(outPath), True,
        [[nomPlusSymmFuncErr, nomMinusSymmFuncErr],
         [placeHolderNom, newAlternateBkg]], firstBin, lastBin + 2, True, True,
        True, False, False)
    myPainter.drawDataWithFitAsHistogram(
        newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]",
        "Events", ["Data", "Fit", "Fit uncertainty", "Function choice"],
        "{0}/compareFitQualtiyAndFitChoice".format(outPath),
        True, [[newNomPlus1, newNomMinus1],
               [nomPlusSymmFuncErr, nomMinusSymmFuncErr]], firstBin,
        lastBin + 2, True, True, True, False, False)

    myPainter.drawDataWithFitAsHistogram(
        newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]",
        "Events",
        ["Data", "Fit", "Statistical fit uncertainty", "Function choice"],
        "{0}/compareFitQualityAndFitChoice_Asymm".format(outPath), True,
        [[newNomPlus1, newNomMinus1],
         [placeHolderNom, newValueNewFuncErrDirected]], firstBin, lastBin + 2,
        True, True, True, False, False)

    # Overlay 3 and 4 parameter fit functions
    myPainter.drawDataWithFitAsHistogram(
        newbasicdata, newbasicBkgFrom4ParamFit, luminosity, 13, "m_{jj} [TeV]",
        "Events", ["Data", "Fit", "Alternate function"],
        "{0}/compareFitChoices".format(outPath), True,
        [[placeHolderNom, newAlternateBkg]], firstBin, lastBin + 2, True, True,
        True, False, False)

    #print "RATI"
    #newfitfunctionratio = newAlternateBkg.Clone()
    #newfitfunctionratio.Add(newAlternateBkg,-1)
    #for bin in range(0,newAlternateBkg.GetNbinsX()+1) :
    #  if newAlternateBkg.GetBinContent(bin) == 0 :
    #    newfitfunctionratio.SetBinContent(bin,0)
    #  else :
    #    newfitfunctionratio.SetBinContent(bin,(newbasicBkgFrom4ParamFit.GetBinContent(bin)/newAlternateBkg.GetBinContent(bin)))
    #myPainter.drawBasicHistogram(newfitfunctionratio,firstBin,lastBin-5,"m_{jj} [TeV]","3 par/4par","{0}/compareDiffFitChoices".format(outPath))
    # BROKEN myPainter.drawManyOverlaidHistograms([newbasicBkgFrom4ParamFit],["3 par"],"m_{jj} [TeV]","Events","CompareFitFunctions",firstBin,lastBin+2,0,1E6)

    # Make a ratio histogram for Sasha's plot.
    # altFitRatio = ROOT.TH1D("altFitRatio","altFitRatio",len(newbins)-1,array('d',newbins))
    # for bin in range(0,altFitRatio.GetNbinsX()+1) :
    #   if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0 :
    #     altFitRatio.SetBinContent(bin,0)
    #   else :
    #     altFitRatio.SetBinContent(bin,(valueNewFuncErrDirected.GetBinContent(bin)-newbasicBkgFrom4ParamFit.GetBinContent(bin))/newbasicBkgFrom4ParamFit.GetBinContent(bin))

    # Make a ratio histogram for paper plot.
    PlusNomRatio = ROOT.TH1D("PlusNomRatio", "PlusNomRatio",
                             len(newbins) - 1, array('d', newbins))
    for bin in range(0, PlusNomRatio.GetNbinsX() + 1):
        if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0:
            PlusNomRatio.SetBinContent(bin, 0)
        else:
            PlusNomRatio.SetBinContent(
                bin, (newNomPlus1.GetBinContent(bin) -
                      newbasicBkgFrom4ParamFit.GetBinContent(bin)) /
                newbasicBkgFrom4ParamFit.GetBinContent(bin))
    MinusNomRatio = ROOT.TH1D("MinusNomRatio", "MinusNomRatio",
                              len(newbins) - 1, array('d', newbins))
    for bin in range(0, MinusNomRatio.GetNbinsX() + 1):
        if newbasicBkgFrom4ParamFit.GetBinContent(bin) == 0:
            MinusNomRatio.SetBinContent(bin, 0)
        else:
            MinusNomRatio.SetBinContent(
                bin, (newNomMinus1.GetBinContent(bin) -
                      newbasicBkgFrom4ParamFit.GetBinContent(bin)) /
                newbasicBkgFrom4ParamFit.GetBinContent(bin))

    # myPainter.drawDataWithFitAsHistogramAndResidual(newbasicdata,newbasicBkgFrom4ParamFit,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatio".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin+2,True,True,True,False,False,True,False,True,bumpHunterPVal,True,fitRange[0],fitRange[1]) # changed from lastBin+2 to lastBin+18 to match FancyFigure
    #
    # myPainter.drawDataWithFitAsHistogramAndResidualPaper(newbasicdata,newbasicBkgFrom4ParamFit,luminosity,13,"m_{jj} [TeV]","Events",["Data","Fit","Statistical uncertainty on fit","Function choice"],"{0}/compareFitQualityAndFitChoice_Asymm_WithRatioPaper".format(outPath),True,[[newNomPlus1,newNomMinus1],[placeHolderNom,newValueNewFuncErrDirected]],[altFitRatio,MinusNomRatio,PlusNomRatio],firstBin,lastBin+2,True,True,True,False,False) # changed from lastBin+2 to lastBin+18 to match FancyFigure
    #
    # myPainter.drawMultipleFitsAndResiduals(newbasicdata,[newbasicBkgFrom4ParamFit,newValueNewFuncErrDirected],[altFitRatio],["Nominal fit","Func choice unc"],"m_{jj} [TeV]","Events",["(alt-nom)/nom"],"{0}/directedFuncChoiceVersusNominal_withRatio".format(outPath),luminosity,13,firstBin,lastBin+2)

    if doStatSearch:
        TomographyPlotWithStats = searchInputFile.Get(
            "TomographyPlotWithStats")
        bumpHunterStatsWSyst = searchInputFile.Get("bumpHunterStatsWSyst")
        bumpPValStat = bumpHunterStatsWSyst[0]
        bumpPValLow = bumpHunterStatsWSyst[1]
        bumpPValHigh = bumpHunterStatsWSyst[2]
        myPainter.drawPseudoExperimentsWithObservedStat(bumpHunterStatsWSyst,3.20359,0.7241,0,luminosity,13,\
                'BumpHunter','Pseudo-experiments',"{0}/bumpHunterStatPlot_withUncertainties".format(outPath))
        myPainter.drawBumpHunterTomographyPlot(
            TomographyPlotWithStats,
            "{0}/bumpHunterTomographyPlot_withStats".format(outPath))

        print "with stats, bumpLowEdge, bumpHighEdge are", bumpPValLow, bumpPValHigh
        print "BumpHunter pvalue is", bumpPValStat

    searchInputFile.Close()

    print "Done."
Esempio n. 5
0
doMCComparison = False
folderextension = "./plots/"
plotextension = ""

# Define necessary quantities.
Ecm = 13
luminosity = 1000

# make plots folder i.e. make folder extension
if not os.path.exists(folderextension):
    os.makedirs(folderextension)

# Initialize painter
myPainter = Morisot()
#myPainter.setEPS(True)
myPainter.setColourPalette("ATLAS")
myPainter.setLabelType(
    1)  # Sets label type i.e. Internal, Work in progress etc.
# See below for label explanation
# 0 Just ATLAS
# 1 "Preliminary"
# 2 "Internal"
# 3 "Simulation Preliminary"
# 4 "Simulation Internal"
# 5 "Simulation"
# 6 "Work in Progress"

# Will run for each signal type you include here.
#signalInputFileTypes = ["ZPrime0p16"]
signalInputFileTypes = [
    "ZPrime0p10", "ZPrime0p20", "ZPrime0p30", "ZPrime0p40"
Esempio n. 6
0
def getGaussianLimits( inputfileform, ratios, dataset, luminosity, cutstring, makePlot = True, outfolder = "./plots/"):

  basicInputFiles = {}
  for r in ratios: basicInputFiles[r] = []

  import glob
  file_list = glob.glob(inputfileform)
  for f in file_list:
    ratio_str = f.split('.')[-2].split('_')[-1]
    if ratio_str == 'resolutionwidth': ratio = 0.0
    else: ratio = float(ratio_str)/1000.
    if ratio in basicInputFiles: basicInputFiles[ratio].append(f)

  # Initialize painter
  myPainter = Morisot()
  # Internal
  if len(ratios) > 1: myPainter.setColourPalette("Tropical")
  else: myPainter.setColourPalette("ATLAS")
  myPainter.setLabelType(2)
  myPainter.cutstring = cutstring
  #myPainter.setLabelType(1)

  minMassVal = {}
  values = {}
  mass_list = []
  allobserved = []
  allexpected = []
  allexpected1Sigma = []
  allexpected2Sigma = []
  
  results = {}
  
  for r in ratios:
    values[r] = {}
    for f in basicInputFiles[r]:
      file = ROOT.TFile.Open(f)
      CLs_str = "CLsPerMass_widthToMass%d"%(r*1000)
      if not file or not file.Get(CLs_str): continue
      CLs = file.Get(CLs_str) 
      masses = file.Get("massesUsed")

      if masses == None: continue

      for i,mass in enumerate(masses) :
      
          #if dataset == "J100" and mass < 700: continue
          if "J75" in dataset and not makePlot and mass > 700: continue
          if mass > 1850: continue
          
          mass_list += [mass]
          PE_tree = file.Get("ensemble_tree_%d_%d"%(mass,r*1000))
          PE_CLs = []
          for event in PE_tree:
              PE_CLs.append( event.GetBranch("95quantile_marginalized_1").GetListOfLeaves().At(0).GetValue() )
          expCLs = GetCenterAndSigmaDeviations(PE_CLs)

          #print mass, CLs[i]/luminosity, [e/luminosity for e in expCLs]
          if mass not in values[r]:
            values[r][mass] = {'obs': [], 'exp': [], 'PEs': [] }
          values[r][mass]['obs'].append(CLs[i]/luminosity)
          values[r][mass]['exp'].append(expCLs[2]/luminosity)
          values[r][mass]['PEs'] += [e/luminosity for e in PE_CLs]        

    mass_list = sorted(list(set(mass_list)))
    thisobserved = ROOT.TGraph()
    thisexpected = ROOT.TGraph()
    thisexpected_plus1  = ROOT.TGraph()
    thisexpected_minus1 = ROOT.TGraph()
    thisexpected_plus2  = ROOT.TGraph()
    thisexpected_minus2 = ROOT.TGraph()
    for m in mass_list :
      if m not in values[r]: continue
      expCLs = GetCenterAndSigmaDeviations(values[r][m]['PEs'])
      print r, m, values[r][m]['obs'][0], values[r][m]['exp'][0], len(values[r][m]['PEs'])
      thisobserved.SetPoint(       thisobserved.GetN(),m,values[r][m]['obs'][0])
      thisexpected_minus2.SetPoint(thisexpected_minus2.GetN(),m,expCLs[0])
      thisexpected_minus1.SetPoint(thisexpected_minus1.GetN(),m,expCLs[1])
      thisexpected.SetPoint(       thisexpected.GetN(),m,expCLs[2])
      thisexpected_plus1.SetPoint( thisexpected_plus1.GetN(),m,expCLs[3])
      thisexpected_plus2.SetPoint( thisexpected_plus2.GetN(),m,expCLs[4])

    allobserved.append(thisobserved)
    allexpected.append(thisexpected)
    
    thisexpected1Sigma = makeBand(thisexpected_minus1,thisexpected_plus1)
    thisexpected2Sigma = makeBand(thisexpected_minus2,thisexpected_plus2)
    
    if r == 0:
      allexpected1Sigma.append(thisexpected1Sigma)
      allexpected2Sigma.append(thisexpected2Sigma)
      #limtxt = ' #scale[0.8]{(95% CL U.L. #pm 1-2#sigma)}'
      #if limtxt not in names['%1.2f'%r]:
      #  names['%1.2f'%r] += limtxt
    else:
        allexpected1Sigma.append(ROOT.TGraph())
        allexpected2Sigma.append(ROOT.TGraph()) 
    #allexpected1Sigma.append(thisexpected1Sigma)
    #allexpected2Sigma.append(thisexpected2Sigma)
    results[r] = {'obs':thisobserved, 'exp': thisexpected,'exp1':  thisexpected1Sigma,'exp2': thisexpected2Sigma}
    
  if makePlot:
    #print ratios
    #print [names['%1.2f'%r] for r in ratios]
    outname = outfolder+"GenericGaussians_"+dataset

    if len(ratios) == 1:
      outname += "_" + str(int(ratios[0]*100))
    myPainter.drawSeveralObservedExpectedLimits(allobserved,allexpected,allexpected1Sigma,allexpected2Sigma,[names['%1.2f'%r] for r in ratios],outname,"m_{G} [GeV]",\
     "#sigma #times #it{A} #times BR [pb]",luminosity,13,400,1850,2E-2,200,[],ATLASLabelLocation="BottomL",cutLocation="Left", doLegendLocation="Left" if len(ratios) == 1 else "Center")
  
  return results