Esempio n. 1
0
def test_func():
    # Set some constants
    data_path = os.environ.get('BIGARTM_UNITTEST_DATA')
    dictionary_name = 'dictionary'
    pwt = 'pwt'
    nwt = 'nwt'
    rwt = 'rwt'
    docword = 'docword.kos.txt'
    vocab = 'vocab.kos.txt'

    num_topics = 10
    num_document_passes = 10
    num_outer_iterations = 8

    smsp_phi_tau = -20.0
    smsp_theta_tau = -3.0

    perplexity_tol = 1.0
    expected_perp_col_value_on_iteration = {
        0: 6650.1,
        1: 2300.2,
        2: 1996.8,
        3: 1786.1,
        4: 1692.7,
        5: 1644.4,
        6: 1612.3,
        7: 1589.5
    }
    expected_perp_doc_value_on_iteration = {
        0: 6614.6,
        1: 2295.0,
        2: 1996.4,
        3: 1786.1,
        4: 1692.7,
        5: 1644.2,
        6: 1611.7,
        7: 1588.6
    }
    expected_perp_zero_words_on_iteration = {
        0: 494,
        1: 210,
        2: 24,
        3: 0,
        4: 2,
        5: 10,
        6: 28,
        7: 47
    }

    batches_folder = tempfile.mkdtemp()
    try:
        # Create the instance of low-level API and master object
        lib = artm.wrapper.LibArtm()

        # Parse collection from disk
        lib.ArtmParseCollection({
            'format':
            constants.CollectionParserConfig_CollectionFormat_BagOfWordsUci,
            'docword_file_path':
            os.path.join(data_path, docword),
            'vocab_file_path':
            os.path.join(data_path, vocab),
            'target_folder':
            batches_folder
        })

        # Create master component and scores
        perplexity_config = messages.PerplexityScoreConfig()
        perplexity_config.model_type = constants.PerplexityScoreConfig_Type_UnigramCollectionModel
        perplexity_config.dictionary_name = dictionary_name

        scores = {
            'PerplexityDoc': messages.PerplexityScoreConfig(),
            'PerplexityCol': perplexity_config
        }
        master = mc.MasterComponent(lib, scores=scores)

        # Create collection dictionary and import it
        master.gather_dictionary(dictionary_target_name=dictionary_name,
                                 data_path=batches_folder,
                                 vocab_file_path=os.path.join(
                                     data_path, vocab))

        # Configure basic regularizers
        master.create_regularizer(name='SmoothSparsePhi',
                                  config=messages.SmoothSparsePhiConfig(
                                      dictionary_name=dictionary_name),
                                  tau=0.0)
        master.create_regularizer(name='SmoothSparseTheta',
                                  config=messages.SmoothSparseThetaConfig(),
                                  tau=0.0)

        # Initialize model
        master.initialize_model(
            model_name=pwt,
            topic_names=['topic_{}'.format(i) for i in range(num_topics)],
            dictionary_name=dictionary_name)

        for iter in range(num_outer_iterations):
            # Invoke one scan of the collection, regularize and normalize Phi
            master.clear_score_cache()
            master.process_batches(pwt=pwt,
                                   nwt=nwt,
                                   num_document_passes=num_document_passes,
                                   batches_folder=batches_folder,
                                   regularizer_name=['SmoothSparseTheta'],
                                   regularizer_tau=[smsp_theta_tau])
            master.regularize_model(pwt, nwt, rwt, ['SmoothSparsePhi'],
                                    [smsp_phi_tau])
            master.normalize_model(pwt, nwt, rwt)

            # Retrieve perplexity score
            perplexity_doc_score = master.get_score('PerplexityDoc')
            perplexity_col_score = master.get_score('PerplexityCol')

            # Assert and print scores
            string = 'Iter#{0}'.format(iter)
            string += ': Collection perp. = {0:.1f}'.format(
                perplexity_col_score.value)
            string += ', Document perp. = {0:.1f}'.format(
                perplexity_doc_score.value)
            string += ', Zero words = {0}'.format(
                perplexity_doc_score.zero_words)
            print(string)

            print(perplexity_col_score.value,
                  expected_perp_col_value_on_iteration[iter])
            assert abs(
                perplexity_col_score.value -
                expected_perp_col_value_on_iteration[iter]) < perplexity_tol
            assert abs(
                perplexity_doc_score.value -
                expected_perp_doc_value_on_iteration[iter]) < perplexity_tol
            assert perplexity_doc_score.zero_words - expected_perp_zero_words_on_iteration[
                iter] == 0
    finally:
        shutil.rmtree(batches_folder)
Esempio n. 2
0
def test_func():
    # Set some constants
    data_path = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
    dictionary_name = 'dictionary'
    pwt = 'pwt'
    nwt = 'nwt'
    rwt = 'rwt'
    docword = 'docword.kos.txt'
    vocab = 'vocab.kos.txt'

    smsp_phi_tau = -0.2
    smsp_theta_tau = -0.1
    decor_phi_tau = 1000000

    num_topics = 10
    num_inner_iterations = 10
    num_outer_iterations = 8

    perplexity_tol = 0.001
    expected_perplexity_value_on_iteration = {
        0: 6703.161,
        1: 2426.277,
        2: 2276.476,
        3: 1814.072,
        4: 1742.911,
        5: 1637.142,
        6: 1612.946,
        7: 1581.725
    }
    sparsity_tol = 0.001
    expected_phi_sparsity_value_on_iteration = {
        0: 0.059,
        1: 0.120,
        2: 0.212,
        3: 0.306,
        4: 0.380,
        5: 0.438,
        6: 0.483,
        7: 0.516
    }
    expected_theta_sparsity_value_on_iteration = {
        0: 0.009,
        1: 0.036,
        2: 0.146,
        3: 0.239,
        4: 0.278,
        5: 0.301,
        6: 0.315,
        7: 0.319
    }

    batches_folder = tempfile.mkdtemp()
    try:
        # Create the instance of low-level API and master object
        lib = artm.wrapper.LibArtm()

        # Parse collection from disk
        lib.ArtmParseCollection({
            'format':
            constants.CollectionParserConfig_Format_BagOfWordsUci,
            'docword_file_path':
            os.path.join(data_path, docword),
            'vocab_file_path':
            os.path.join(data_path, vocab),
            'target_folder':
            batches_folder
        })

        # Create master component and scores
        scores = {
            'Perplexity': messages.PerplexityScoreConfig(),
            'SparsityPhi': messages.SparsityPhiScoreConfig()
        }
        master = mc.MasterComponent(lib, scores=scores)

        master.create_score('SparsityTheta',
                            messages.SparsityThetaScoreConfig())
        master.create_score('TopTokens', messages.TopTokensScoreConfig())

        # Create collection dictionary and import it
        master.gather_dictionary(dictionary_target_name=dictionary_name,
                                 data_path=batches_folder,
                                 vocab_file_path=os.path.join(
                                     data_path, vocab))

        # Configure basic regularizers
        master.create_regularizer(name='SmoothSparsePhi',
                                  config=messages.SmoothSparsePhiConfig(),
                                  tau=0.0)
        master.create_regularizer(name='SmoothSparseTheta',
                                  config=messages.SmoothSparseThetaConfig(),
                                  tau=0.0)
        master.create_regularizer(name='DecorrelatorPhi',
                                  config=messages.DecorrelatorPhiConfig(),
                                  tau=0.0)

        # Initialize model
        master.initialize_model(
            model_name=pwt,
            topic_names=['topic_{}'.format(i) for i in xrange(num_topics)],
            dictionary_name=dictionary_name)

        for iter in xrange(num_outer_iterations):
            # Invoke one scan of the collection, regularize and normalize Phi
            master.clear_score_cache()
            master.process_batches(pwt=pwt,
                                   nwt=nwt,
                                   num_inner_iterations=num_inner_iterations,
                                   batches_folder=batches_folder,
                                   regularizer_name=['SmoothSparseTheta'],
                                   regularizer_tau=[smsp_theta_tau])
            master.regularize_model(pwt, nwt, rwt,
                                    ['SmoothSparsePhi', 'DecorrelatorPhi'],
                                    [smsp_phi_tau, decor_phi_tau])
            master.normalize_model(pwt, nwt, rwt)

            # Retrieve scores
            perplexity_score = master.get_score('Perplexity')
            sparsity_phi_score = master.get_score('SparsityPhi')
            sparsity_theta_score = master.get_score('SparsityTheta')

            # Assert and print scores
            print_string = 'Iter#{0}'.format(iter)
            print_string += ': Perplexity = {0:.3f}'.format(
                perplexity_score.value)
            print_string += ', Phi sparsity = {0:.3f}'.format(
                sparsity_phi_score.value)
            print_string += ', Theta sparsity = {0:.3f}'.format(
                sparsity_theta_score.value)
            print print_string

            assert abs(
                perplexity_score.value -
                expected_perplexity_value_on_iteration[iter]) < perplexity_tol
            assert abs(
                sparsity_phi_score.value -
                expected_phi_sparsity_value_on_iteration[iter]) < sparsity_tol
            assert abs(sparsity_theta_score.value -
                       expected_theta_sparsity_value_on_iteration[iter]
                       ) < sparsity_tol

        # Retrieve and print top tokens score
        top_tokens_score = master.get_score('TopTokens')

        print 'Top tokens per topic:'
        top_tokens_triplets = zip(
            top_tokens_score.topic_index,
            zip(top_tokens_score.token, top_tokens_score.weight))
        for topic_index, group in itertools.groupby(
                top_tokens_triplets, key=lambda (topic_index, _): topic_index):
            print_string = 'Topic#{0} : '.format(topic_index)
            for _, (token, weight) in group:
                print_string += ' {0}({1:.3f})'.format(token, weight)
            print print_string
    finally:
        shutil.rmtree(batches_folder)
Esempio n. 3
0
def test_func():
    # Set some constants
    data_path = os.environ.get('BIGARTM_UNITTEST_DATA')
    dictionary_name = 'dictionary'
    pwt = 'pwt'
    nwt = 'nwt'
    docword = 'docword.kos.txt'
    vocab = 'vocab.kos.txt'

    smsp_phi_tau = -0.2
    smsp_theta_tau = -0.1
    decor_phi_tau = 1000000

    num_topics = 10
    num_document_passes = 10
    num_outer_iterations = 8

    perplexity_tol = 0.001
    expected_perplexity_value_on_iteration = {
        0: 6703.161,
        1: 2426.277,
        2: 2276.476,
        3: 1814.072,
        4: 1742.911,
        5: 1637.142,
        6: 1612.946,
        7: 1581.725
    }
    sparsity_tol = 0.001
    expected_phi_sparsity_value_on_iteration = {
        0: 0.059,
        1: 0.120,
        2: 0.212,
        3: 0.306,
        4: 0.380,
        5: 0.438,
        6: 0.483,
        7: 0.516
    }
    expected_theta_sparsity_value_on_iteration = {
        0: 0.009,
        1: 0.036,
        2: 0.146,
        3: 0.239,
        4: 0.278,
        5: 0.301,
        6: 0.315,
        7: 0.319
    }

    expected_perplexity_value_online = 1572.268
    expected_phi_sparsity_value_online = 0.528
    expected_theta_sparsity_value_online = 0.320

    batches_folder = tempfile.mkdtemp()
    try:
        # Create the instance of low-level API and master object
        lib = artm.wrapper.LibArtm()

        # Parse collection from disk
        lib.ArtmParseCollection({
            'format':
            constants.CollectionParserConfig_CollectionFormat_BagOfWordsUci,
            'docword_file_path':
            os.path.join(data_path, docword),
            'vocab_file_path':
            os.path.join(data_path, vocab),
            'target_folder':
            batches_folder
        })

        # Create master component and scores
        scores = {
            'Perplexity': messages.PerplexityScoreConfig(),
            'SparsityPhi': messages.SparsityPhiScoreConfig()
        }
        master = mc.MasterComponent(lib,
                                    scores=scores,
                                    num_document_passes=num_document_passes)

        master.create_score('SparsityTheta',
                            messages.SparsityThetaScoreConfig())
        master.create_score('TopTokens', messages.TopTokensScoreConfig())

        # Create collection dictionary and import it
        master.gather_dictionary(dictionary_target_name=dictionary_name,
                                 data_path=batches_folder,
                                 vocab_file_path=os.path.join(
                                     data_path, vocab))

        # Configure basic regularizers
        master.create_regularizer(name='SmoothSparsePhi',
                                  config=messages.SmoothSparsePhiConfig(),
                                  tau=0.0)
        master.create_regularizer(name='SmoothSparseTheta',
                                  config=messages.SmoothSparseThetaConfig(),
                                  tau=0.0)
        master.create_regularizer(name='DecorrelatorPhi',
                                  config=messages.DecorrelatorPhiConfig(),
                                  tau=decor_phi_tau)

        master.reconfigure_regularizer(name='SmoothSparsePhi',
                                       tau=smsp_phi_tau)
        master.reconfigure_regularizer(name='SmoothSparseTheta',
                                       tau=smsp_theta_tau)

        # Initialize model
        master.initialize_model(
            model_name=pwt,
            topic_names=['topic_{}'.format(i) for i in range(num_topics)],
            dictionary_name=dictionary_name)

        for iter in range(num_outer_iterations):
            master.fit_offline(batches_folder=batches_folder,
                               num_collection_passes=1)

            # Retrieve scores
            perplexity_score = master.get_score('Perplexity')
            sparsity_phi_score = master.get_score('SparsityPhi')
            sparsity_theta_score = master.get_score('SparsityTheta')

            # Assert and print scores
            print_string = 'Iter#{0}'.format(iter)
            print_string += ': Perplexity = {0:.3f}'.format(
                perplexity_score.value)
            print_string += ', Phi sparsity = {0:.3f}'.format(
                sparsity_phi_score.value)
            print_string += ', Theta sparsity = {0:.3f}'.format(
                sparsity_theta_score.value)
            print(print_string)

            assert abs(
                perplexity_score.value -
                expected_perplexity_value_on_iteration[iter]) < perplexity_tol
            assert abs(
                sparsity_phi_score.value -
                expected_phi_sparsity_value_on_iteration[iter]) < sparsity_tol
            assert abs(sparsity_theta_score.value -
                       expected_theta_sparsity_value_on_iteration[iter]
                       ) < sparsity_tol

            perplexity_scores = master.get_score_array('Perplexity')
            assert len(perplexity_scores) == (iter + 1)

        # proceed one online iteration
        batch_filenames = glob.glob(os.path.join(batches_folder, '*.batch'))
        master.fit_online(batch_filenames=batch_filenames,
                          update_after=[4],
                          apply_weight=[0.5],
                          decay_weight=[0.5])

        # Retrieve scores
        perplexity_score = master.get_score('Perplexity')
        sparsity_phi_score = master.get_score('SparsityPhi')
        sparsity_theta_score = master.get_score('SparsityTheta')

        # Assert and print scores
        print_string = 'Iter Online'
        print_string += ': Perplexity = {0:.3f}'.format(perplexity_score.value)
        print_string += ', Phi sparsity = {0:.3f}'.format(
            sparsity_phi_score.value)
        print_string += ', Theta sparsity = {0:.3f}'.format(
            sparsity_theta_score.value)
        print(print_string)

        assert abs(perplexity_score.value -
                   expected_perplexity_value_online) < perplexity_tol
        assert abs(sparsity_phi_score.value -
                   expected_phi_sparsity_value_online) < sparsity_tol
        assert abs(sparsity_theta_score.value -
                   expected_theta_sparsity_value_online) < sparsity_tol

        # Retrieve and print top tokens score
        top_tokens_score = master.get_score('TopTokens')

        print('Top tokens per topic:')
        top_tokens_triplets = zip(
            top_tokens_score.topic_index,
            zip(top_tokens_score.token, top_tokens_score.weight))
        for topic_index, group in itertools.groupby(
                top_tokens_triplets, key=lambda triplet: triplet[0]):
            print_string = 'Topic#{0} : '.format(topic_index)
            for _, (token, weight) in group:
                print_string += ' {0}({1:.3f})'.format(token, weight)
            print(print_string)

        master.clear_score_array_cache()
        master.fit_online(batch_filenames=batch_filenames,
                          update_after=[1, 2, 3, 4],
                          apply_weight=[0.5, 0.5, 0.5, 0.5],
                          decay_weight=[0.5, 0.5, 0.5, 0.5])
        perplexity_scores = master.get_score_array('Perplexity')
        assert len(perplexity_scores) == 4

    finally:
        shutil.rmtree(batches_folder)