Esempio n. 1
0
def filter_mdf(file, signals):
    mdf_file = MDF(file)
    # Lenkradwinkel
    lenkradwinkel = mdf_file.get('can0_LWI_Lenkradwinkel')
    samples = list(lenkradwinkel.samples)
    vz_samples = list(mdf_file.get('can0_LWI_VZ_Lenkradwinkel').samples)
    for i in range(0, len(samples)):
        if not int(vz_samples[i]):
            samples[i] = samples[i] * -1
    lenkradwinkel.samples = np.asarray(samples)

    # Lenkradwinkel geschw.
    lenkrad_gesch = mdf_file.get('can0_LWI_Lenkradw_Geschw')
    samples = list(lenkrad_gesch.samples)
    vz_samples = list(mdf_file.get('can0_LWI_VZ_Lenkradw_Geschw').samples)
    for i in range(0, len(samples)):
        if not int(vz_samples[i]):
            samples[i] = samples[i] * -1
    lenkrad_gesch.samples = np.asarray(samples)

    # Gierrate
    gierrate = mdf_file.get('can0_ESP_Gierrate')
    samples = list(gierrate.samples)
    vz_samples = list(mdf_file.get('can0_ESP_VZ_Gierrate').samples)
    for i in range(0, len(samples)):
        if not int(vz_samples[i]):
            samples[i] = samples[i] * -1
    gierrate.samples = np.asarray(samples)

    # filter file with VZ signals
    filtered_mdf = mdf_file.filter(signals)
    return filtered_mdf
Esempio n. 2
0
def main():
    file = sys.argv[1]
    mdf_file = MDF(file)
    mdf_file = mdf_file.filter([
        'can0_LWI_Lenkradwinkel', 'can0_LWI_Lenkradw_Geschw',
        'can0_ESP_Fahrer_bremst', 'can0_ESP_Bremsdruck',
        'can0_MO_Fahrpedalrohwert_01', 'can0_MO_Kuppl_schalter',
        'can0_MO_Drehzahl_01', 'can0_MO_Gangposition', 'can0_ESP_v_Signal',
        'can0_ESP_HL_Fahrtrichtung', 'can0_ESP_HR_Fahrtrichtung',
        'can0_ESP_Laengsbeschl', 'can0_ESP_Gierrate'
    ])
    signals = mdf_file.iter_channels(skip_master=True)
    sf = dict()
    for signal in signals:
        f = len(
            signal.timestamps) / (signal.timestamps[-1] - signal.timestamps[0])
        sf[signal.name[5:]] = f

    values = list(map(lambda x: int(math.ceil(x) / 10) * 10, sf.values()))
    signal_names = list(map(lambda x: '_'.join(x.split('_')[1:]), sf.keys()))
    fig, ax = plt.subplots(figsize=[8, 4])
    plt.bar(range(len(sf)), values, align='center')
    plt.yticks(np.arange(0, max(values) + 10, 10))
    plt.ylabel('Frequency [Hz]')
    plt.xticks(range(len(sf)), signal_names, rotation='vertical')
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)
    ax.grid(color='gray', linestyle='-', linewidth=0.25, alpha=0.5)

    plt.savefig('../Thesis/images/signal_frequences.png', bbox_inches='tight')
Esempio n. 3
0
from asammdf import MDF
import sys
import matplotlib.pyplot as plt
mdf = MDF('Dauerzeitschrieb_20171218_053831.mf4', memory='full')

sig_list = []
while 1:
    choice_1 = input("Do you want to add a signal?(y/n)\n")
    if choice_1 == "n":
        if len(sig_list) > 0:
            filter = mdf.filter(sig_list)
            file_name = input("Enter the file name to be saved\n")
            filter.convert('4.10').save(file_name + '.mf4')
            mdf_new = MDF((file_name + '.mf4'), memory='full')
            data_frame = mdf_new.export('pandas', filename=file_name)
            data_frame.to_csv(file_name + '.csv')
            print("CSV and mf4 file created.\n")
            choice_2 = input("Do you want to plot the signal(s)?(y/n)\n")
            if choice_2 == "y":
                for i in range(len(sig_list)):
                    plt.figure(i)
                    plt.xlabel('Time [s]')
                    plt.ylabel('[{}]'.format(mdf.get(sig_list[i]).unit))
                    plt.plot(
                        mdf.get(sig_list[i]).timestamps,
                        mdf.get(sig_list[i]).samples, 'b')
                    plt.plot(
                        mdf.get(sig_list[i]).timestamps,
                        mdf.get(sig_list[i]).samples, 'b.')
                    plt.grid(True)
        break
Esempio n. 4
0
def main():

    my_parser = argparse.ArgumentParser(
        description='Transform signals with sign')
    my_parser.add_argument('-i',
                           '--input',
                           action='store',
                           metavar='mf4_input',
                           type=str,
                           required=True,
                           help='Input directory with source mf4 files')

    my_parser.add_argument('-o',
                           '--output',
                           action='store',
                           metavar='mf4_output',
                           type=str,
                           required=True,
                           help='Output directory')

    # Execute the parse_args() method
    args = my_parser.parse_args()

    mf4_input = args.input
    mf4_output = args.output

    if not os.path.isdir(mf4_input):
        print('The mf4 input path specified is not a directory')
        sys.exit()

    if not os.path.isdir(mf4_output):
        print('The mf4 ouput path specified is not a directory')
        sys.exit()

    for file in os.listdir(mf4_input):
        if not file.endswith('.mf4'):
            continue
        print('process %s' % file)
        mdf_file = MDF(os.path.join(mf4_input, file))

        # Lenkradwinkel
        lenkradwinkel = mdf_file.get('can0_LWI_Lenkradwinkel')
        samples = list(lenkradwinkel.samples)
        vz_samples = list(mdf_file.get('can0_LWI_VZ_Lenkradwinkel').samples)
        for i in range(0, len(samples)):
            if not int(vz_samples[i]):
                samples[i] = samples[i] * -1
        lenkradwinkel.samples = np.asarray(samples)

        # Lenkradwinkel geschw.
        lenkradwinkel = mdf_file.get('can0_LWI_Lenkradw_Geschw')
        samples = list(lenkradwinkel.samples)
        vz_samples = list(mdf_file.get('can0_LWI_VZ_Lenkradw_Geschw').samples)
        for i in range(0, len(samples)):
            if not int(vz_samples[i]):
                samples[i] = samples[i] * -1
        lenkradwinkel.samples = np.asarray(samples)

        # Gierrate
        lenkradwinkel = mdf_file.get('can0_ESP_Gierrate')
        samples = list(lenkradwinkel.samples)
        vz_samples = list(mdf_file.get('can0_ESP_VZ_Gierrate').samples)
        for i in range(0, len(samples)):
            if not int(vz_samples[i]):
                samples[i] = samples[i] * -1
        lenkradwinkel.samples = np.asarray(samples)

        # filter file with VZ signals
        filtered_mdf = mdf_file.filter(interesting_signals)
        filtered_mdf.save(os.path.join(mf4_output, file))
Esempio n. 5
0
import matplotlib
# import matplotlib.pyplot as plt

# MDF 파일을 읽어옵니다.
path = "./"
data = MDF(path + "Acceleration_StandingStart.MDF")

### CAN 신호 리스트를 가져 옵니다.
signal_list = list(data.channels_db)
# 가져온 리스트에서 시간축은 신호가 아니므로 제외합니다.
signal_list.remove('t')
print(signal_list)  # 로깅된 CAN 신호 전체를 볼 수 있습니다.

### 그래프 출력
#speed = data.get('VehicleSpeed')
#speed.plot()

### 필요한 신호만 필터링
filtered_signal_list = ['VehicleSpeed', 'Throttle']

### 여러 그래프 출력
for signal in data.select(filtered_signal_list):
    signal.plot()

# 10초 ~ 12초 사이의 데이터만 필터링
filtered_data = data.filter(filtered_signal_list).cut(start=10, stop=12)

### 엑셀 파일 또는 CSV 파일로 출력
#signals_data_frame = data.to_dataframe()
#signals_data_frame.to_excel(path + "signals_data_frame.xlsx")
#signals_data_frame.to_csv(path + "signals_data_frame.csv")
Esempio n. 6
0
# create empty MDf version 4.00 file
mdf4 = MDF(version='4.10')

# append the 3 signals to the new file
signals = [s_uint8, s_int32, s_float64]
mdf4.append(signals, 'Created by Python')

# save new file
mdf4.save('my_new_file.mf4', overwrite=True)

# convert new file to mdf version 3.10 with lowest possible RAM usage
mdf3 = mdf4.convert('3.10', memory='minimum')
print(mdf3.version)

# get the float signal
sig = mdf3.get('Float64_Signal')
print(sig)

# cut measurement from 0.3s to end of measurement
mdf4_cut = mdf4.cut(start=0.3)
mdf4_cut.get('Float64_Signal').plot()

# cut measurement from start of measurement to 0.4s
mdf4_cut = mdf4.cut(stop=0.45)
mdf4_cut.get('Float64_Signal').plot()

# filter some signals from the file
mdf4 = mdf4.filter(['Int32_Signal', 'Uint8_Signal'])

# save using zipped transpose deflate blocks
mdf4.save('out.mf4', compression=2, overwrite=True)
Esempio n. 7
0
for files in range(len(srcFiles)):  #
    print(
        f'\nRead mf4 files started. {files+1}/{len(srcFiles)} File selected {srcFiles[files].name}'
    )
    sleep(1)
    try:
        mf4_data = MDF(srcFiles[files])
        csvname = srcFiles[files].name
        outfilename_Comment = srcFiles[0].parent.as_posix().replace(
            '/', '\\') + '\\' + csvname + '_Comments.csv'
        outfilename_Gps = srcFiles[0].parent.as_posix().replace(
            '/', '\\') + '\\' + csvname + '_GPS.csv'
        outfilename_merged = srcFiles[0].parent.as_posix().replace(
            '/', '\\') + '\\' + srcFiles[0].parts[-2] + '_Merged.csv'

        filtered = mf4_data.filter(['Comment'])
        sdata = filtered.get('Comment')
        commentSignals.append(sdata)
        comment = sdata.samples.astype(str).tolist()
        timestamp = sdata.timestamps.tolist()
        fname = [srcFiles[files].name] * len(comment)
        gpsLatitude = mf4_data.get('GPSLatitude')
        gpsLongitude = mf4_data.get('GPSLongitude')
        gpsTs = gpsLatitude.timestamps.tolist()
        gpsLat = gpsLatitude.samples.tolist()
        gpsLon = gpsLongitude.samples.tolist()

        gpsLatwgs = [(Lat / 1000000) - 90 for Lat in gpsLat]
        gpsLonwgs = [(Lon / 1000000) - 180 for Lon in gpsLon]
        gpsList = {'ts': gpsTs, 'lat': gpsLatwgs, 'lon': gpsLonwgs}
        gpsFrame = pd.DataFrame(gpsList).to_csv(outfilename_Gps)