Esempio n. 1
0
    def calculate(self, atoms, name):
        args = self.args
        if args.constrain_tags:
            tags = [int(t) for t in args.constrain_tags.split(',')]
            mask = [t in tags for t in atoms.get_tags()]
            atoms.constraints = FixAtoms(mask=mask)
        
        trajectory = PickleTrajectory(self.get_filename(name, 'traj'), 'w',
                                      atoms)
        if args.maximum_stress:
            optimizer = LBFGS(UnitCellFilter(atoms), logfile=self.logfile)
            fmax = args.maximum_stress
        else:
            optimizer = LBFGS(atoms, logfile=self.logfile)
            fmax = args.maximum_force

        optimizer.attach(trajectory)
        optimizer.run(fmax=fmax)

        data = RunCommand.calculate(self, atoms, name)

        if hasattr(optimizer, 'force_calls'):
            data['force calls'] = optimizer.force_calls

        return data
Esempio n. 2
0
def test_qchem_calculator():
    import numpy as np
    from ase.build import molecule
    from ase.calculators.qchem import QChem
    from ase.optimize import LBFGS

    mol = molecule('C2H6')
    calc = QChem(label='calc/ethane', method='B3LYP', basis='6-31+G*')

    mol.set_calculator(calc)
    # Check energy and forces
    np.testing.assert_allclose(mol.get_potential_energy(),
                               -2172.379183703419,
                               atol=10.)
    np.testing.assert_allclose(mol.get_forces(),
                               np.array(
                                   [[0., 0.00240141, 0.04992568],
                                    [-0., -0.00240141, -0.04992568],
                                    [-0., 0.11626015, 0.07267481],
                                    [-0.10132204, -0.05804009, 0.07538475],
                                    [0.10132204, -0.05804009, 0.07538475],
                                    [-0., -0.11626015, -0.07267481],
                                    [-0.10132204, 0.05804009, -0.07538475],
                                    [0.10132204, 0.05804009, -0.07538475]]),
                               atol=0.05)

    opt = LBFGS(mol)
    opt.run()
    assert opt.converged()
Esempio n. 3
0
    def opt(self, rdkmol, dhls, logger='optlog.out'):
        Na = rdkmol.GetNumAtoms()
        X, S = __convert_rdkitmol_to_nparr__(rdkmol)
        atm=Atoms(symbols=S, positions=X)
        atm.set_calculator(ANIENS(self.ens))                #Set the ANI Ensemble as the calculator

        phi_fix = []
        for d in dhls:
            phi_restraint=atm.get_dihedral(d)
            phi_fix.append([phi_restraint, d])
        c = FixInternals(dihedrals=phi_fix, epsilon=1.e-9)
        atm.set_constraint(c)

        dyn = LBFGS(atm, logfile=logger)                               #Choose optimization algorith
        dyn.run(fmax=self.fmax, steps=1000)         #optimize molecule to Gaussian's Opt=Tight fmax criteria, input in eV/A (I think)
        e=atm.get_potential_energy()*hdt.evtokcal
        s=atm.calc.stddev*hdt.evtokcal
        
        phi_value = []
        for d in dhls:
            phi_value.append(atm.get_dihedral(d)*180./np.pi)
        #X = mol.get_positions()
        if self.printer: 
            print('Phi value (degrees), energy (kcal/mol), sigma= ', phi_value, "{0:.2f}".format(e), "{0:.2f}".format(s))
        return phi_value, e, s, atm
Esempio n. 4
0
def test_unitcellfilter(asap3):
    cu = bulk('Cu') * (6, 6, 6)
    cu.calc = asap3.EMT()
    f = UnitCellFilter(cu, [1, 1, 1, 0, 0, 0])
    opt = LBFGS(f)
    t = Trajectory('Cu-fcc.traj', 'w', cu)
    opt.attach(t)
    opt.run(5.0)
Esempio n. 5
0
    def optimize_rdkit_molecule(self, mrdk, cid, fmax=0.0001, steps=500, logger='opt.out'):
        mol = __convert_rdkitmol_to_aseatoms__(mrdk,cid)
        mol.set_calculator(ANI(False))
        mol.calc.setnc(self.nc)
        dyn = LBFGS(mol,logfile=logger)
        #dyn = LBFGS(mol)
        dyn.run(fmax=fmax,steps=steps)
        stps = dyn.get_number_of_steps()

        xyz = mol.get_positions()
        for i,x in enumerate(xyz):
            mrdk.GetConformer(cid).SetAtomPosition(i,x)
Esempio n. 6
0
def test_optimizer(atoms):
    pos = atoms.positions.copy()
    atoms.calc = get_calc(label='opt', scf='qc')
    opt_gauss = GaussianOptimizer(atoms)
    opt_gauss.run(fmax='tight')
    e_gaussopt = read('opt.log', index=-1).get_potential_energy()

    atoms.positions[:] = pos
    atoms.calc.set_label('sp')
    opt_ase = LBFGS(atoms, trajectory='ase_opt.traj')
    opt_ase.run(fmax=1e-2)
    e_aseopt = atoms.get_potential_energy()
    assert e_gaussopt - e_aseopt == pytest.approx(0., abs=1e-3)
Esempio n. 7
0
def test_pressure(atoms, cellfilter):
    xcellfilter = cellfilter(atoms, scalar_pressure=10.0 * GPa)

    # test all derivatives
    f, fn = gradient_test(xcellfilter)
    assert abs(f - fn).max() < 5e-6

    opt = LBFGS(xcellfilter)
    opt.run(1e-3)

    # check pressure is within 0.1 GPa of target
    sigma = atoms.get_stress() / GPa
    pressure = -(sigma[0] + sigma[1] + sigma[2]) / 3.0
    assert abs(pressure - 10.0) < 0.1
Esempio n. 8
0
    def optimize_molecule(self, X, S, fmax=0.1, steps=10000, logger='opt.out'):
        mol = Atoms(symbols=S, positions=X)
        mol.set_pbc((False, False, False))
        mol.set_calculator(ANIENS(self.ens))
        dyn = LBFGS(mol,logfile=logger)
        #dyn = LBFGS(mol)
        #dyn = QuasiNewton(mol,logfile=logger)
        dyn.run(fmax=fmax,steps=steps)
        stps = dyn.get_number_of_steps()

        opt = True
        if steps == stps:
            opt = False

        return np.array(mol.get_positions(),dtype=np.float32), opt
def relax_atoms(atoms,
                tol=1e-3,
                method='lbfgs_precon',
                max_steps=1000,
                traj_file=None,
                **kwargs):
    import model
    atoms.set_calculator(model.calculator)
    if hasattr(model, 'Optimizer'):
        method = 'model_optimizer'
        opt = model.Optimizer(atoms)
        opt.run(tol, max_steps)
    elif method.startswith('lbfgs') or method == 'fire' or method == 'cg_n':
        if method == 'lbfgs_ASE':
            from ase.optimize import LBFGS
            opt = LBFGS(atoms, **kwargs)
        elif method == 'cg_n':
            from quippy import Minim
            opt = Minim(atoms,
                        relax_positions=True,
                        relax_cell=False,
                        method='cg_n')
        else:
            from ase.optimize.precon.precon import Exp
            from ase.optimize.precon.lbfgs import PreconLBFGS
            precon = None
            if method.endswith('precon'):
                precon = Exp(3.0, recalc_mu=True)
            if method.startswith('lbfgs'):
                opt = PreconLBFGS(atoms, precon=precon, **kwargs)
            else:
                opt = FIRE(atoms, **kwargs)
        if traj_file is not None and method != 'cg_n':
            traj = open(traj_file, 'w')

            def write_trajectory():
                write(traj, atoms, format='extxyz')

            opt.attach(write_trajectory)
        opt.run(tol, max_steps)
        try:
            traj.close()
        except:
            pass
    else:
        raise ValueError('unknown method %s!' % method)

    return atoms
Esempio n. 10
0
    def optimize(self, atoms, name):
        args = self.args
        if args.constrain_tags:
            tags = [int(t) for t in args.constrain_tags.split(',')]
            mask = [t in tags for t in atoms.get_tags()]
            atoms.constraints = FixAtoms(mask=mask)

        logfile = self.get_filename(name, 'log')
        if args.maximum_stress:
            optimizer = LBFGS(UnitCellFilter(atoms), logfile=logfile)
            fmax = args.maximum_stress
        else:
            optimizer = LBFGS(atoms, logfile=logfile)
            fmax = args.maximum_force

        trajectory = Trajectory(self.get_filename(name, 'traj'), 'w', atoms)
        optimizer.attach(trajectory)
        optimizer.run(fmax=fmax)
Esempio n. 11
0
def SurfaceEnergy(images, natoms, calc, fmax=0.01, debug=False):
    """Calculate the surface energy from a list of slab images.

    Parameters
    ----------
    images: List of slab images which the calculation is based on. The x and
    y dimensions of the images unit cell must be conserved.

    natoms: Number of atoms in a atomic layer in the slabs.

    calc: Calculator object that can be attached to the images.
    """
    ucell = images[0].get_cell()

    layers = np.zeros(len(images))
    energies = np.zeros(len(images))

    if debug:
        print "Layers   Energy   LBFGS steps"

    for i, atoms in enumerate(images):
        cell = atoms.get_cell()
        if (ucell[0] != cell[0]).any() or (ucell[1] != cell[1]).any():
            raise ValueError(
                "The x and y dimensions of the unit cell must be conserved.")

        atoms.set_calculator(calc)

        dyn = LBFGS(atoms, logfile=None, trajectory=None)
        dyn.run(fmax=fmax, steps=1000)
        assert dyn.converged(), "LBFGS not converged in 100 steps!"

        layers[i] = len(atoms) / natoms
        energies[i] = atoms.get_potential_energy()

        if debug:
            print "%4i%12.3f%10i" % (layers[i], energies[i],
                                     dyn.get_number_of_steps())

    p = polyfit(layers.reshape((-1, 1)), energies, 1)
    surface_energy = p.c[0] / (2 * natoms)
    assert surface_energy > 0.0

    return surface_energy
Esempio n. 12
0
def make_methylamine():
    # Construct Methylamine.
    atoms = Atoms('NH2CH3')

    # Define connectivity.
    atoms_bonds = [ [0,1], [0,2], [0,3], [3,4], [3,5], [3,6] ]
    # Displace atoms so that they aren't on top of each other.
    atoms.rattle(0.001)

    # Construct VSEPR calculator.
    calculator = VSEPR(atoms, atoms_bonds)
    atoms.set_calculator(calculator)
    atoms.center()

    # Run optimization.
    opt = LBFGS(atoms, logfile='/dev/null')
    opt.run()

    return atoms
Esempio n. 13
0
    def optimize_rdkit_molecule(self, mrdk, cid, fmax=0.1, steps=10000, logger='opt.out'):
        mol = __convert_rdkitmol_to_aseatoms__(mrdk,cid)
        mol.set_pbc((False, False, False))
        mol.set_calculator(ANIENS(self.ens))
        dyn = LBFGS(mol,logfile=logger)
        #dyn = LBFGS(mol)
        #dyn = QuasiNewton(mol,logfile=logger)
        dyn.run(fmax=fmax,steps=steps)
        stps = dyn.get_number_of_steps()

        opt = True
        if steps == stps:
            opt = False

        xyz = mol.get_positions()
        for i,x in enumerate(xyz):
            mrdk.GetConformer(cid).SetAtomPosition(i,x)

        return opt
Esempio n. 14
0
def SurfaceEnergy(images, natoms, calc, fmax=0.01, debug=False):
    """Calculate the surface energy from a list of slab images.

    Parameters
    ----------
    images: List of slab images which the calculation is based on. The x and
    y dimensions of the images unit cell must be conserved.

    natoms: Number of atoms in a atomic layer in the slabs.

    calc: Calculator object that can be attached to the images.
    """
    ucell = images[0].get_cell()

    layers = np.zeros(len(images))
    energies = np.zeros(len(images))

    if debug:
        print "Layers   Energy   LBFGS steps"

    for i, atoms in enumerate(images):
        cell = atoms.get_cell()
        if (ucell[0] != cell[0]).any() or (ucell[1] != cell[1]).any():
            raise ValueError("The x and y dimensions of the unit cell must be conserved.")

        atoms.set_calculator(calc)

        dyn = LBFGS(atoms, logfile=None, trajectory=None)
        dyn.run(fmax=fmax, steps=1000)
        assert dyn.converged(), "LBFGS not converged in 100 steps!"

        layers[i] = len(atoms) / natoms
        energies[i] = atoms.get_potential_energy()

        if debug:
            print "%4i%12.3f%10i" % (layers[i], energies[i], dyn.get_number_of_steps())

    p = polyfit(layers.reshape((-1,1)), energies, 1)
    surface_energy = p.c[0] / (2 * natoms)
    assert surface_energy > 0.0

    return surface_energy
Esempio n. 15
0
def relax_bare_cluster(cluster, relax_fmax=0.05):
    c0 = cluster.copy()
    orig_index = c0.get_array("orig_index")
    fix_list = np.loadtxt("cp2k_fix_list.txt", dtype="int") - 1
    fix_orig_index = [orig_index[i] for i in fix_list]
    hydrogens = np.where(c0.get_atomic_numbers() == 1)[0]
    del c0[hydrogens]

    new_fix_list = [i for i, j in enumerate(c0.get_array("orig_index")) if j in fix_orig_index]
    pot = calc
    c0.set_calculator(pot)
    c0.get_potential_energy()
    c0.set_array("fixdip", np.array([True if i in new_fix_list else False for i in range(len(c0))]))
    c0.set_array("dipoles", np.zeros((len(c0), 3)))  # pot.atoms.arrays['dipoles'])
    # c0.arrays['dipoles'][new_fix_list, :] = 0.0

    const = FixAtoms(indices=new_fix_list)
    c0.set_constraint(const)
    opt = LBFGS(c0)
    opt.run(fmax=relax_fmax)
    return c0
Esempio n. 16
0
def test_Ar_minimize():
    from ase.calculators.lammpsrun import LAMMPS
    from ase.cluster.icosahedron import Icosahedron
    from ase.data import atomic_numbers, atomic_masses
    from numpy.testing import assert_allclose
    from ase.optimize import LBFGS

    ar_nc = Icosahedron('Ar', noshells=2)
    ar_nc.cell = [[300, 0, 0], [0, 300, 0], [0, 0, 300]]
    ar_nc.pbc = True

    params = {}
    params['pair_style'] = 'lj/cut 8.0'
    params['pair_coeff'] = ['1 1 0.0108102 3.345']
    params['masses'] = ['1 {}'.format(atomic_masses[atomic_numbers['Ar']])]

    with LAMMPS(specorder=['Ar'], **params) as calc:
        ar_nc.calc = calc

        assert_allclose(ar_nc.get_potential_energy(),
                        -0.468147667942117,
                        atol=1e-4,
                        rtol=1e-4)
        assert_allclose(ar_nc.get_forces(),
                        calc.calculate_numerical_forces(ar_nc),
                        atol=1e-4,
                        rtol=1e-4)

        dyn = LBFGS(ar_nc, force_consistent=False)
        dyn.run(fmax=1E-6)

        assert_allclose(ar_nc.get_potential_energy(),
                        -0.4791815886953914,
                        atol=1e-4,
                        rtol=1e-4)
        assert_allclose(ar_nc.get_forces(),
                        calc.calculate_numerical_forces(ar_nc),
                        atol=1e-4,
                        rtol=1e-4)
Esempio n. 17
0
def add_ligand(atoms, ligand, site, position=None):
    atoms.set_tags(0)
    ligand = ligand.copy()
    # Extract nanoparticle.
    np_idx = [ i for i in xrange(len(atoms)) if atoms[i].number > 20 ]
    nanoparticle = atoms[np_idx]

    # Pick a binding site and shift ligand above it.
    com = nanoparticle.get_center_of_mass()
    v = atoms[site].position - com
    v /= numpy.linalg.norm(v)
    ligand.center()

    displacement_length = 1.1 * ligand_size(ligand)
    if position is None:
        ligand.positions += atoms.positions[site] + displacement_length*v
    else:
        ligand.positions += position + displacement_length*v
    ligand.set_tags(1)

    # Create combined system.
    atoms += ligand

    # Construct VSEPR calculator with N-Au interaction.
    ligand_mask = [tag == 1 for tag in atoms.get_tags()]
    ligand_bonds = connect_bonds(atoms, mask=ligand_mask)
    calculator = VSEPR(atoms,
                       ligand_bonds + [[site,len(atoms)-len(ligand)]],
                       nonbonded=connect_nonbonded(atoms,
                                                   connect_angles(ligand_bonds),
                                                   r_cut=displacement_length*2))
    atoms.set_calculator(calculator)

    atoms.set_constraint(FixAtoms(indices=range(len(atoms)-len(ligand))))

    # Run optimization.
    opt = LBFGS(atoms, memory=10, maxstep=0.2)
    opt.run(fmax=1e-2)
Esempio n. 18
0
    def optimize(self, atoms, name):
        args = self.args
        if args.constrain_tags:
            tags = [int(t) for t in args.constrain_tags.split(',')]
            mask = [t in tags for t in atoms.get_tags()]
            atoms.constraints = FixAtoms(mask=mask)

        trajectory = Trajectory(self.get_filename(name, 'traj'), 'w', atoms)
        if args.maximum_stress:
            optimizer = LBFGS(UnitCellFilter(atoms), logfile=self.logfile)
            fmax = args.maximum_stress
        else:
            optimizer = LBFGS(atoms, logfile=self.logfile)
            fmax = args.maximum_force

        optimizer.attach(trajectory)
        optimizer.run(fmax=fmax)

        data = {}
        if hasattr(optimizer, 'force_calls'):
            data['force_calls'] = optimizer.force_calls

        return data
Esempio n. 19
0
def test_Ar_minimize(factory, ar_nc, params):
    with factory.calc(specorder=['Ar'], **params) as calc:
        ar_nc.calc = calc

        assert_allclose(ar_nc.get_potential_energy(),
                        -0.468147667942117,
                        atol=1e-4,
                        rtol=1e-4)
        assert_allclose(ar_nc.get_forces(),
                        calc.calculate_numerical_forces(ar_nc),
                        atol=1e-4,
                        rtol=1e-4)

        dyn = LBFGS(ar_nc, force_consistent=False)
        dyn.run(fmax=1E-6)

        assert_allclose(ar_nc.get_potential_energy(),
                        -0.4791815886953914,
                        atol=1e-4,
                        rtol=1e-4)
        assert_allclose(ar_nc.get_forces(),
                        calc.calculate_numerical_forces(ar_nc),
                        atol=1e-4,
                        rtol=1e-4)
Esempio n. 20
0
def test_unitcellfilter(asap3):
    a = 3.6
    b = a / 2
    cu = Atoms('Cu', cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=1) * (6, 6, 6)
    cu.calc = asap3.EMT()
    f = UnitCellFilter(cu, [1, 1, 1, 0, 0, 0])
    opt = LBFGS(f)
    t = Trajectory('Cu-fcc.traj', 'w', cu)
    opt.attach(t)
    opt.run(5.0)

    # HCP:
    from ase.build import bulk
    cu = bulk('Cu', 'hcp', a=a / sqrt(2))
    cu.cell[1, 0] -= 0.05
    cu *= (6, 6, 3)
    cu.calc = asap3.EMT()
    print(cu.get_forces())
    print(cu.get_stress())
    f = UnitCellFilter(cu)
    opt = MDMin(f, dt=0.01)
    t = Trajectory('Cu-hcp.traj', 'w', cu)
    opt.attach(t)
    opt.run(0.2)
Esempio n. 21
0
def test_unitcellfilter():
    from math import sqrt
    from ase import Atoms
    from ase.optimize import LBFGS
    from ase.constraints import UnitCellFilter
    from ase.io import Trajectory
    from ase.optimize.mdmin import MDMin
    try:
        from asap3 import EMT
    except ImportError:
        pass
    else:
        a = 3.6
        b = a / 2
        cu = Atoms('Cu', cell=[(0, b, b), (b, 0, b),
                               (b, b, 0)], pbc=1) * (6, 6, 6)
        cu.set_calculator(EMT())
        f = UnitCellFilter(cu, [1, 1, 1, 0, 0, 0])
        opt = LBFGS(f)
        t = Trajectory('Cu-fcc.traj', 'w', cu)
        opt.attach(t)
        opt.run(5.0)

        # HCP:
        from ase.build import bulk
        cu = bulk('Cu', 'hcp', a=a / sqrt(2))
        cu.cell[1, 0] -= 0.05
        cu *= (6, 6, 3)
        cu.set_calculator(EMT())
        print(cu.get_forces())
        print(cu.get_stress())
        f = UnitCellFilter(cu)
        opt = MDMin(f, dt=0.01)
        t = Trajectory('Cu-hcp.traj', 'w', cu)
        opt.attach(t)
        opt.run(0.2)
Esempio n. 22
0
    def relax(self):
        from ase.optimize import LBFGS

        cached = sys.__stdout__
        try:
            optimizer = LBFGS(self.ucf)
            optimizer.logfile = None
            optimised = optimizer.run(fmax=0.05, steps=100)
        except Exception:
            optimised = False

        self.doc["optimised"] = bool(optimised)
        self.doc["positions_abs"] = self.atoms.get_positions().tolist()
        self.doc["lattice_cart"] = self.atoms.get_cell().tolist()
        self.doc["lattice_abc"] = cart2abc(self.doc["lattice_cart"])
        self.doc["positions_frac"] = cart2frac(self.doc["lattice_cart"],
                                               self.doc["positions_abs"])
        self.doc["enthalpy_per_atom"] = float(self.calc.results["energy"] /
                                              len(self.doc["atom_types"]))
        self.doc["enthalpy"] = float(self.calc.results["energy"])
        self.queue.put(self.doc)
        sys.stdout = cached
Esempio n. 23
0
!wget https://www.quantum-espresso.org/upf_files/Cl.pbesol-n-kjpaw_psl.1.0.0.UPF
#----
from ase.build import bulk
from ase.calculators.espresso import Espresso
from ase.constraints import UnitCellFilter
from ase.optimize import LBFGS
import ase.io 
pseudopotentials = {'Na': 'Na.pbesol-spn-kjpaw_psl.1.0.0.UPF',
                    'Cl': 'Cl.pbesol-n-kjpaw_psl.1.0.0.UPF'}  
rocksalt = bulk('NaCl', crystalstructure='rocksalt', a=6.0)
calc = Espresso(pseudopotentials=pseudopotentials,pseudo_dir = './',
                tstress=True, tprnfor=True, kpts=(3, 3, 3))
rocksalt.set_calculator(calc)
ucf = UnitCellFilter(rocksalt)
opt = LBFGS(ucf)
opt.run(fmax=0.005)
# cubic lattic constant
print((8*rocksalt.get_volume()/len(rocksalt))**(1.0/3.0))
#----
# %cd /content
!mkdir Cu
# %cd Cu
#----
!wget https://www.quantum-espresso.org/upf_files/Cu.pz-d-rrkjus.UPF
#----
from ase import Atoms
from ase.build import bulk
from ase.calculators.espresso import Espresso
atoms = bulk("Cu")
pseudopotentials = {'Cu':'Cu.pz-d-rrkjus.UPF'}
input_data = {
Esempio n. 24
0
                             (-r * cos(a / 2), -r * sin(a / 2), 0), (0, 0, 0),
                             (-r * cos(a), 0, r * sin(a)), (-r, 0, 0)])
    dimer.positions[3:, 0] += 2.8
    dimer.constraints = FixBondLengths([
        ((selection[i] + 3) % 6, (selection[i - 1] + 3) % 6) for i in range(3)
    ])

    dimer.calc = EIQMMM(selection,
                        GPAW(txt=name + '.txt', h=0.16),
                        TIP4P(),
                        interaction,
                        vacuum=4,
                        embedding=Embedding(rc=0.2, rc2=20, width=1),
                        output=name + '.out')
    opt = LBFGS(dimer, trajectory=name + '.traj')
    opt.run(0.02)

    monomer = dimer[selection]
    monomer.center(vacuum=4)
    monomer.calc = GPAW(txt=name + 'M.txt', h=0.16)
    opt = PreconLBFGS(monomer, precon=Exp(A=3), trajectory=name + 'M.traj')
    opt.run(0.02)
    e0 = monomer.get_potential_energy()
    be = dimer.get_potential_energy() - e0
    d = dimer.get_distance(0, 3)
    print(name, be, d)
    if name == '012':
        assert abs(be - -0.288) < 0.002
        assert abs(d - 2.76) < 0.02
    else:
        assert abs(be - -0.316) < 0.002
Esempio n. 25
0
atoms=read('../'+fo2+'.xsf')
mask = [atom.position[2] < 17 for atom in atoms]
fixlayers = FixAtoms(mask=mask)
atoms.set_constraint(fixlayers)
atoms.set_pbc([1,1,1])

# 2. Benchmark.
###############################################################################

# 2.C Optimize using LBFGS.
initial_lbfgs = atoms.copy()
initial_lbfgs.set_calculator(calc)
lbfgs_opt = LBFGS(initial_lbfgs, trajectory=fo2+'_lbfgs.traj')
itime=time.default_timer()
lbfgs_opt.run(fmax=0.01)
logging.warning('lbfgs =   %s', time.default_timer()-itime)

# 2.D Optimize using FIRE.
initial_fire = atoms.copy()
initial_fire.set_calculator(calc)
fire_opt = FIRE(initial_fire, trajectory=fo2+'_fire.traj')
itime=time.default_timer()
fire_opt.run(fmax=0.01)
logging.warning('fires =   %s', time.default_timer()-itime)

# 2.A. Optimize structure using MLMin (CatLearn).
initial_mlmin = atoms.copy()
initial_mlmin.set_calculator(calc)
mlmin_opt = MLMin(initial_mlmin, trajectory=fo2+'_catlearn.traj')
itime=time.default_timer()
Esempio n. 26
0
            ediffg = float(line.split('=')[1])
    ediffg = ediffg * -1.0
    return nsw, pstress, tebeg, potim, ediffg


if __name__ == '__main__':
    '''
    stress format: XX XY XZ YY YZ ZZ 
    units: kB
    '''
    calc = GAP(rcut=6.0)
    nsw, pstress, _, _, ediffg = read_incar()
    my_atoms = read('POSCAR', format='vasp')
    my_atoms.set_calculator(calc)
    dyn = LBFGS(my_atoms, trajectory='ase.traj')
    dyn.run(fmax=ediffg, steps=nsw)

    atoms_lat = my_atoms.cell
    atoms_pos = my_atoms.positions
    atoms_force = my_atoms.get_forces()
    atoms_stress = my_atoms.get_stress()
    atoms_num = my_atoms.get_atomic_numbers()
    atoms_symbols = my_atoms.get_chemical_symbols()
    atoms_formula = my_atoms.get_chemical_formula()
    atoms_ene = my_atoms.get_potential_energy()
    atoms_vol = my_atoms.get_volume()
    element, ele = get_ele_dict(atoms_symbols)

    write_contcar(element, ele, atoms_lat, atoms_pos)
    write_outcar(element, ele, atoms_vol, atoms_lat, atoms_pos, \
                 atoms_ene, atoms_force, atoms_stress * 10.0, pstress)
Esempio n. 27
0
# Construct pyNeuroChem class
nc = pync.molecule(cnstfile, saefile, nnfdir, 0)

files = [f for f in os.listdir(idir) if f.split(".")[1] == "ipt"]
for i, f in enumerate(files):
    data = hdn.read_rcdb_coordsandnm(idir + f)
    X = data['coordinates']
    S = data['species']

    mol = Atoms(positions=X, symbols=S)

    mol.set_calculator(ANI(False))
    mol.calc.setnc(nc)

    dyn = LBFGS(mol, logfile='optimization.log')
    dyn.run(fmax=0.00001, steps=1000)

    X = mol.get_positions()

    Nc = int(f.split(".")[0].split("-")[1])
    Fp = f.split("-")[0]
    smiles = get_smiles(idir + f)

    print(i, 'of', len(files), ':', f, dyn.get_number_of_steps(), Nc)
    hdn.write_rcdb_input(X,
                         S,
                         Nc,
                         sdir,
                         Fp,
                         50,
                         'wb97x/6-31g*',
Esempio n. 28
0
from ase.io import Trajectory
from ase.optimize.mdmin import MDMin
try:
    from asap3 import EMT
except ImportError:
    pass
else:
    a = 3.6
    b = a / 2
    cu = Atoms('Cu', cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=1) * (6, 6, 6)
    cu.set_calculator(EMT())
    f = UnitCellFilter(cu, [1, 1, 1, 0, 0, 0])
    opt = LBFGS(f)
    t = Trajectory('Cu-fcc.traj', 'w', cu)
    opt.attach(t)
    opt.run(5.0)

    # HCP:
    from ase.build import hcp0001
    cu = hcp0001('Cu', (1, 1, 2), a=a / sqrt(2))
    cu.cell[1, 0] += 0.05
    cu *= (6, 6, 3)
    cu.set_calculator(EMT())
    print(cu.get_forces())
    print(cu.get_stress())
    f = UnitCellFilter(cu)
    opt = MDMin(f, dt=0.01)
    t = Trajectory('Cu-hcp.traj', 'w', cu)
    opt.attach(t)
    opt.run(0.2)
Esempio n. 29
0
#!/usr/bin/env python3

from ase import Atom, Atoms
from ase.build import bulk, fcc100, add_adsorbate, add_vacuum
from ase.calculators.vasp import Vasp
from ase.calculators.kim.kim import KIM
from ase.calculators.qmmm import ForceQMMM, RescaledCalculator
from ase.constraints import StrainFilter
from ase.optimize import LBFGS
from ase.visualize import view

atoms = bulk("Pd", "fcc", a=3.5, cubic=True)
atoms.calc = KIM("MEAM_LAMMPS_JeongParkDo_2018_PdMo__MO_356501945107_000")
opt = LBFGS(StrainFilter(atoms), logfile=None)
opt.run(0.03, steps=30)
length = atoms.cell.cellpar()[0]

atoms = fcc100("Pd", (2,2,5), a=length, vacuum=10, periodic=True)
add_adsorbate(atoms, Atoms([Atom("Mo")]), 1.2)


qm_mask = [len(atoms)-1, len(atoms)-2]
qm_calc = Vasp(directory="./qmmm")
mm_calc = KIM("MEAM_LAMMPS_JeongParkDo_2018_PdMo__MO_356501945107_000")
mm_calc = RescaledCalculator(mm_calc, 1, 1, 1, 1)
qmmm = ForceQMMM(atoms, qm_mask, qm_calc, mm_calc, buffer_width=3)
qmmm.initialize_qm_buffer_mask(atoms)
atoms.pbc=True
atoms.calc = qmmm

print(atoms.get_forces())
Esempio n. 30
0
params = {}
params['pair_style'] = 'lj/cut 8.0'
params['pair_coeff'] = ['1 1 0.0108102 3.345']
params['masses'] = ['1 {}'.format(atomic_masses[atomic_numbers['Ar']])]

calc = LAMMPS(specorder=['Ar'], **params)

ar_nc.set_calculator(calc)

assert_allclose(ar_nc.get_potential_energy(),
                -0.468147667942117,
                atol=1e-4,
                rtol=1e-4)
assert_allclose(ar_nc.get_forces(),
                calc.calculate_numerical_forces(ar_nc),
                atol=1e-4,
                rtol=1e-4)

dyn = LBFGS(ar_nc, force_consistent=False)
dyn.run(fmax=1E-6)

assert_allclose(ar_nc.get_potential_energy(),
                -0.4791815886953914,
                atol=1e-4,
                rtol=1e-4)
assert_allclose(ar_nc.get_forces(),
                calc.calculate_numerical_forces(ar_nc),
                atol=1e-4,
                rtol=1e-4)
Esempio n. 31
0
dir = '/home/jujuman/Research/GDB-11-wB97X-6-31gd/dnntsgdb11_02/'

#bz = read('C_100.xyz')
#bz = read('/home/jujuman/Research/GDB-11-wB97X-6-31gd/dnnts_testdata/specialtest/test.xyz')
bz = read(dir + 'molecule-0.xyz')

#L = 16.0
#bz.set_cell(([[L,0,0],[0,L,0],[0,0,L]]))
#bz.set_pbc((True, True, True))

bz.set_calculator(ANI(False))
bz.calc.setnc(nc)

start_time = time.time()
dyn = LBFGS(bz)
dyn.run(fmax=0.0001)
print('[ANI Total time:', time.time() - start_time, 'seconds]')

# Write visualization of molecule
#f = open("optmol_begin.xyz",'w')
#f.write('\n' + str(len(bz)) + '\n')
#for i in bz:
#    f.write(str(i.symbol) + ' ' + str(i.x) + ' ' + str(i.y) + ' ' + str(i.z) + '\n')
#f.close()

# Temperature
T = 300.0

# We want to run MD with constant energy using the Langevin algorithm
# with a time step of 5 fs, the temperature T and the friction
# coefficient to 0.02 atomic units.
Esempio n. 32
0
import numpy as np
from ase.build import molecule
from ase.calculators.qchem import QChem
from ase.optimize import LBFGS

mol = molecule('C2H6')
calc = QChem(label='calc/ethane', method='B3LYP', basis='6-31+G*')

mol.set_calculator(calc)
# Check energy and forces
np.testing.assert_allclose(mol.get_potential_energy(),
                           -2172.379183703419,
                           atol=10.)
np.testing.assert_allclose(mol.get_forces(),
                           np.array([[0., 0.00240141, 0.04992568],
                                     [-0., -0.00240141, -0.04992568],
                                     [-0., 0.11626015, 0.07267481],
                                     [-0.10132204, -0.05804009, 0.07538475],
                                     [0.10132204, -0.05804009, 0.07538475],
                                     [-0., -0.11626015, -0.07267481],
                                     [-0.10132204, 0.05804009, -0.07538475],
                                     [0.10132204, 0.05804009, -0.07538475]]),
                           atol=0.05)

opt = LBFGS(mol)
opt.run()
assert opt.converged()
Esempio n. 33
0
from ase_interface import aniensloader

import ase
import time
from ase import units
from ase.io import read, write
from ase.optimize import BFGS, LBFGS

# Read molecule from xyz
mol = read('data/water.xyz')

# Current ANI model options are:
# '../ani_models/ani-1ccx_8x.info' Coupled cluster transfer learned model
# '../ani_models/ani-1x_8x.info'   Full ANI-1x wb97x/6-31g* dataset model
mol.set_calculator(ANIENS(aniensloader('../ani_models/ani-1ccx_8x.info', 0)))

# Calculate energy
ei = mol.get_potential_energy()
print("Initial Energy: ", ei)

# Optimize molecule
print("Optimizing...")
start_time = time.time()
dyn = LBFGS(mol)
dyn.run(fmax=0.001)
print('[ANI Optimization - Total time:', time.time() - start_time, 'seconds]')

# Calculate energy
ef = mol.get_potential_energy()
print("Final Energy: ", ef)
Esempio n. 34
0
calc = fp_GD_Calculator()
# atoms.set_calculator(calc)
atoms.calc = calc

############################## Relaxation type ##############################
'''
Ref : 
    https://wiki.fysik.dtu.dk/ase/ase/optimize.html#module-optimize
    https://wiki.fysik.dtu.dk/ase/ase/constraints.html
'''
af = atoms
# af = StrainFilter(atoms)
# af = UnitCellFilter(atoms)
print(af.get_forces())
############################## Relaxation method ##############################
# opt = BFGS(af, maxstep = 1.e-3, trajectory = trajfile)
# opt = FIRE(af, maxstep = 1.e-3, trajectory = trajfile)
opt = LBFGS(af, maxstep = 1.e-1, trajectory = trajfile, memory = 10, use_line_search = True)
# opt = LBFGS(af, maxstep = 1.e-3, trajectory = trajfile, memory = 10, use_line_search = False)
# opt = SciPyFminCG(af, trajectory = trajfile)
# opt = SciPyFminBFGS(af, trajectory = trajfile)

opt.run(fmax = 1.e-10)

traj = Trajectory(trajfile)
ase.io.write('opt.vasp', traj[-1], direct = True, long_format=True, vasp5 = True)



Esempio n. 35
0
from asap3 import *
from ase.lattice.cubic import FaceCenteredCubic
from ase.optimize import LBFGS
import numpy as np

calc = EMT()
symbol = 'Cu'

syms = ((True, True, True),
        (False, False, False),
        (True, True, False),
        (True, False, False))

for symmetry in syms:
    print "Periodicity:", symmetry
    for n in (4,6):
        atoms = FaceCenteredCubic(symbol=symbol, size=(4, 8, n), pbc=symmetry)
        atoms.set_calculator(calc)

        dyn = LBFGS(atoms, trajectory=None, logfile=None)
        dyn.run(fmax=0.05)

        e = atoms.get_potential_energy()
        print "Layers, energy: %2i %8.3f" % (n, e)

print "TEST PASSED."
Esempio n. 36
0
file_name = file_name_py.replace('.py', '')
file_traj = file_name + '.traj'
start_file = '../In2O3_110_clean.traj'

mode = 'a'
try:
    sys = Trajectory(file_traj, 'r')[-1]
except (IOError, RuntimeError):
    print "Importing trajectory file from: %s" % start_file
    sys = read(start_file)
    sys.center(vacuum=5.0, axis=2)
else:
    print "Importing trajectory file from: %s" % file_traj

set_calc_In2O3(sys)
print "Constraints:"
print "	c1: Fix bottom two layers."
avg_z = np.mean([atom.z for atom in sys])
c1 = FixAtoms(mask=[atom.z < avg_z for atom in sys])
sys.set_constraint(c1)

if testRun == True:
    run_testRun(sys)
else:
    geo_traj = Trajectory(file_traj, mode, sys)
    dyn = LBFGS(sys, trajectory=geo_traj)
    dyn.run(fmax=0.05)
    energy = sys.get_potential_energy()
    print "Energy: %f" % energy
print "Completed %s" % file_name_py
Esempio n. 37
0
try:
    from asap3 import EMT
except ImportError:
    pass
else:
    a = 3.6
    b = a / 2
    cu = Atoms('Cu',
               cell=[(0, b, b), (b, 0, b), (b, b, 0)],
               pbc=1) * (6, 6, 6)
    cu.set_calculator(EMT())
    f = UnitCellFilter(cu, [1, 1, 1, 0, 0, 0])
    opt = LBFGS(f)
    t = Trajectory('Cu-fcc.traj', 'w', cu)
    opt.attach(t)
    opt.run(5.0)

    # HCP:
    from ase.build import hcp0001
    cu = hcp0001('Cu', (1, 1, 2), a=a / sqrt(2))
    cu.cell[1, 0] += 0.05
    cu *= (6, 6, 3)
    cu.set_calculator(EMT())
    print(cu.get_forces())
    print(cu.get_stress())
    f = UnitCellFilter(cu)
    opt = MDMin(f, dt=0.01)
    t = Trajectory('Cu-hcp.traj', 'w', cu)
    opt.attach(t)
    opt.run(0.2)