Esempio n. 1
0
    def camera_common(self, img_laser_ranges, img, img_bgr8):
        (img_h, img_w, img_c) = img.shape

        # runs object detection in the image
        (boxes, scores, classes, num) = self.run_detection(img)

        if num > 0:
            # create list of detected objects
            detected_objects = DetectedObjectList()

            # some objects were detected
            for (box, sc, cl) in zip(boxes, scores, classes):
                ymin = int(box[0] * img_h)
                xmin = int(box[1] * img_w)
                ymax = int(box[2] * img_h)
                xmax = int(box[3] * img_w)
                xcen = int(0.5 * (xmax - xmin) + xmin)
                ycen = int(0.5 * (ymax - ymin) + ymin)

                cv2.rectangle(img_bgr8, (xmin, ymin), (xmax, ymax),
                              (255, 0, 0), 2)

                # computes the vectors in camera frame corresponding to each sides of the box
                rayleft = self.project_pixel_to_ray(xmin, ycen)
                rayright = self.project_pixel_to_ray(xmax, ycen)

                # convert the rays to angles (with 0 poiting forward for the robot)
                thetaleft = math.atan2(-rayleft[0], rayleft[2])
                thetaright = math.atan2(-rayright[0], rayright[2])
                if thetaleft < 0:
                    thetaleft += 2. * math.pi
                if thetaright < 0:
                    thetaright += 2. * math.pi

                # estimate the corresponding distance using the lidar
                dist = self.estimate_distance(thetaleft, thetaright,
                                              img_laser_ranges)

                if not self.object_publishers.has_key(cl):
                    self.object_publishers[cl] = rospy.Publisher(
                        '/detector/' + self.object_labels[cl],
                        DetectedObject,
                        queue_size=10)

                # publishes the detected object and its location
                object_msg = DetectedObject()
                object_msg.id = cl
                object_msg.name = self.object_labels[cl]
                object_msg.confidence = sc
                object_msg.distance = dist
                object_msg.thetaleft = thetaleft
                object_msg.thetaright = thetaright
                object_msg.corners = [ymin, xmin, ymax, xmax]
                self.object_publishers[cl].publish(object_msg)

                # add detected object to detected objects list
                detected_objects.objects.append(self.object_labels[cl])
                detected_objects.ob_msgs.append(object_msg)

            self.detected_objects_pub.publish(detected_objects)
Esempio n. 2
0
    def object_msg(self):
        object_publisher0 = rospy.Publisher('/detector/cat',
                                            DetectedObject,
                                            queue_size=10)
        object_publisher1 = rospy.Publisher('/detector/dog',
                                            DetectedObject,
                                            queue_size=10)
        object_publisher2 = rospy.Publisher('/detector/stop_sign',
                                            DetectedObject,
                                            queue_size=10)
        object_publisher3 = rospy.Publisher('/detector/elephant',
                                            DetectedObject,
                                            queue_size=10)
        object_publisher4 = rospy.Publisher('/detector/bicycle',
                                            DetectedObject,
                                            queue_size=10)

        publishers = [
            object_publisher0, object_publisher1, object_publisher2,
            object_publisher3, object_publisher4
        ]
        names = ['cat', 'dog', 'stop_sign', 'elephant', 'bicycle']

        rate = rospy.Rate(1)  # 1 Hz
        count = 0

        while 1:
            i = count % len(publishers)

            # publishes the detected object and its location
            object_msg = DetectedObject()
            object_msg.id = 0
            object_msg.name = names[i]
            object_msg.confidence = 0
            object_msg.distance = 0
            object_msg.thetaleft = 0
            object_msg.thetaright = 0
            object_msg.corners = [0, 0, 0, 0]
            loc = np.random.rand(2) * 3
            object_msg.location_W = loc.tolist() + [1, 0]

            print('publishing DetectedObject ' + names[i])
            publishers[i].publish(object_msg)
            count += 1
            rate.sleep()
Esempio n. 3
0
    def camera_callback(self, msg):
        """ callback for camera images """

        # save the corresponding laser scan
        img_laser_ranges = list(self.laser_ranges)

        try:
            img = self.bridge.imgmsg_to_cv2(msg, "passthrough")
            img_bgr8 = self.bridge.imgmsg_to_cv2(msg, "bgr8")
        except CvBridgeError as e:
            print(e)

        (img_h, img_w, img_c) = img.shape

        # runs object detection in the image
        (boxes, scores, classes, num) = self.run_detection(img)

        if num > 0:
            # some objects were detected
            for (box, sc, cl) in zip(boxes, scores, classes):
                ymin = int(box[0] * img_h)
                xmin = int(box[1] * img_w)
                ymax = int(box[2] * img_h)
                xmax = int(box[3] * img_w)
                xcen = int(0.5 * (xmax - xmin) + xmin)
                ycen = int(0.5 * (ymax - ymin) + ymin)

                cv2.rectangle(img_bgr8, (xmin, ymin), (xmax, ymax),
                              (255, 0, 0), 2)

                # computes the vectors in camera frame corresponding to each sides of the box
                rayleft = self.project_pixel_to_ray(xmin, ycen)
                rayright = self.project_pixel_to_ray(xmax, ycen)

                # convert the rays to angles (with 0 poiting forward for the robot)
                thetaleft = math.atan2(-rayleft[0], rayleft[2])
                thetaright = math.atan2(-rayright[0], rayright[2])
                if thetaleft < 0:
                    thetaleft += 2. * math.pi
                if thetaright < 0:
                    thetaright += 2. * math.pi

                # estimate the corresponding distance using the lidar
                dist = self.estimate_distance(thetaleft, thetaright,
                                              img_laser_ranges)

                if not self.object_publishers.has_key(cl):
                    self.object_publishers[cl] = rospy.Publisher(
                        '/detector/' + self.object_labels[cl],
                        DetectedObject,
                        queue_size=10)

                # publishes the detected object and its location
                object_msg = DetectedObject()
                object_msg.id = cl
                object_msg.name = self.object_labels[cl]
                object_msg.confidence = sc
                object_msg.distance = dist
                object_msg.thetaleft = thetaleft
                object_msg.thetaright = thetaright
                object_msg.corners = [ymin, xmin, ymax, xmax]
                self.object_publishers[cl].publish(object_msg)

        # displays the camera image
        cv2.imshow("Camera", img_bgr8)
        cv2.waitKey(1)
Esempio n. 4
0
    def camera_common(self, img_laser_ranges, img, img_bgr8):
        (img_h, img_w, img_c) = img.shape

        # runs object detection in the image
        (boxes, scores, classes, num) = self.run_detection(img)

        if num > 0:
            # some objects were detected
            for (box, sc, cl) in zip(boxes, scores, classes):
                ymin = int(box[0] * img_h)
                xmin = int(box[1] * img_w)
                ymax = int(box[2] * img_h)
                xmax = int(box[3] * img_w)
                xcen = int(0.5 * (xmax - xmin) + xmin)
                ycen = int(0.5 * (ymax - ymin) + ymin)

                # print('(xcen, ycen)')
                # print(xcen, ycen)
                # print('(dx, dy)')
                # print(xmax-xmin, ymax-ymin)
                # print('area squared')
                # print(np.sqrt((xmax-xmin)*(ymax-ymin)))

                cv2.rectangle(img_bgr8, (xmin, ymin), (xmax, ymax),
                              (255, 0, 0), 2)

                # computes the vectors in camera frame corresponding to each sides of the box
                rayleft = self.project_pixel_to_ray(xmin, ycen)
                rayright = self.project_pixel_to_ray(xmax, ycen)

                # convert the rays to angles (with 0 poiting forward for the robot)
                thetaleft = math.atan2(-rayleft[0], rayleft[2])
                thetaright = math.atan2(-rayright[0], rayright[2])
                if thetaleft < 0:
                    thetaleft += 2. * math.pi
                if thetaright < 0:
                    thetaright += 2. * math.pi

                # estimate the corresponding distance using the lidar
                dist = self.estimate_distance(thetaleft, thetaright,
                                              img_laser_ranges)

                if not self.object_publishers.has_key(cl):
                    self.object_publishers[cl] = rospy.Publisher(
                        '/detector/' + self.object_labels[cl],
                        DetectedObject,
                        queue_size=10)

                # publishes the detected object and its location
                object_msg = DetectedObject()
                object_msg.id = cl
                object_msg.name = self.object_labels[cl]
                object_msg.confidence = sc
                object_msg.distance = dist
                object_msg.thetaleft = thetaleft
                object_msg.thetaright = thetaright
                object_msg.corners = [ymin, xmin, ymax, xmax]
                self.object_publishers[cl].publish(object_msg)

                print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
                print(num)
                print('height: ' + str(ymax - ymin))
                print(object_msg.name)

                # displays the camera image (when run on laptop only!)
                cv2.imshow("Camera", img_bgr8)
                cv2.waitKey(1)
Esempio n. 5
0
    def loop(self):
        """ the main loop of the robot. At each iteration, depending on its
        mode (i.e. the finite state machine's state), if takes appropriate
        actions. This function shouldn't return anything """

        if not self.params.use_gazebo:
            try:
                origin_frame = "/map" if mapping else "/odom"
                translation, rotation = self.trans_listener.lookupTransform(
                    origin_frame, '/base_footprint', rospy.Time(0))
                self.x, self.y = translation[0], translation[1]
                self.theta = tf.transformations.euler_from_quaternion(
                    rotation)[2]
            except (tf.LookupException, tf.ConnectivityException,
                    tf.ExtrapolationException):
                pass

        # logs the current mode
        if self.prev_mode != self.mode:
            rospy.loginfo("Current mode: %s", self.mode)
            self.prev_mode = self.mode

        ########## Code starts here ##########
        # TODO: Currently the state machine will just go to the pose without stopping
        #       at the stop sign.

        if self.mode == Mode.IDLE:
            # Send zero velocity
            self.stay_idle()

        elif self.mode == Mode.POSE:
            stop_sign_msg = DetectedObject()
            # Moving towards a desired pose
            if self.close_to(self.x_g, self.y_g, self.theta_g):
                self.mode = Mode.IDLE  #if close to the goal, go to IDLE mode
            elif stop_sign_msg is not None:  #if received message from detector (check code)
                self.mode = Mode.NAV  #if stop sign detected, go to NAV mode
            else:
                self.go_to_pose()

        elif self.mode == Mode.STOP:
            # At a stop sign
            if (self.has_stopped()):
                self.init_crossing()  #if robot has stopped for 3 sec, cross

        elif self.mode == Mode.CROSS:
            # Crossing an intersection
            if (self.has_crossed()
                ):  #if robot has crossed, go back to POSE mode
                self.mode = Mode.POSE

        elif self.mode == Mode.NAV:
            if self.close_to(self.x_g, self.y_g, self.theta_g):
                self.mode = Mode.IDLE  #if close to goal, go to IDLE mode
            else:
                self.nav_to_pose()
                #stop_sign_msg = DetectedObject() #from subscriber
                #self.stop_sign_detected_callback(stop_sign_msg)
                # I think we get stuck here - what do we do if we enter Nav mode and the stop sign detection is called but we are not close enough to the stop sign? Return to POSE mode?
                #if:
                #self.mode = Mode.POSE
                #self.mode = Mode.STOP

        else:
            raise Exception("This mode is not supported: {}".format(
                str(self.mode)))
Esempio n. 6
0
    def camera_common(self, img_laser_ranges, img, img_bgr8):

        try:
            (translation, rotation) = self.tf_listener.lookupTransform(
                '/map', '/base_footprint', rospy.Time(0))
            x_w2b_W = translation[0]
            y_w2b_W = translation[1]
            euler = tf.transformations.euler_from_quaternion(rotation)
            theta = euler[2]
            pose_w2b_W = np.vstack((x_w2b_W, y_w2b_W, theta))
            print("Bacons world nav: " + str(pose_w2b_W[:2].flatten()))
            nav_flag = True
        except (tf.LookupException, tf.ConnectivityException,
                tf.ExtrapolationException):
            nav_flag = False

        (img_h, img_w, img_c) = img.shape

        # runs object detection in the image
        (boxes, scores, classes, num) = self.run_detection(img)

        if num > 0:
            # some objects were detected
            for (box, sc, cl) in zip(boxes, scores, classes):
                ymin = int(box[0] * img_h)
                xmin = int(box[1] * img_w)
                ymax = int(box[2] * img_h)
                xmax = int(box[3] * img_w)
                xcen = int(0.5 * (xmax - xmin) + xmin)
                ycen = int(0.5 * (ymax - ymin) + ymin)

                draw_color = (255, 0, 0)

                if self.object_labels[cl] in ANIMAL_LABELS:
                    draw_color = (0, 255, 0)
                elif self.object_labels[cl] == 'stop_sign':
                    draw_color = (0, 0, 255)

                cv2.rectangle(img_bgr8, (xmin, ymin), (xmax, ymax), draw_color,
                              2)
                cv2.putText(img_bgr8, self.object_labels[cl],
                            (xmin, ymin - 10), CV2_FONT, .5, draw_color)
                # computes the vectors in camera frame corresponding to each sides of the box
                rayleft = self.project_pixel_to_ray(xmin, ycen)
                rayright = self.project_pixel_to_ray(xmax, ycen)

                # convert the rays to angles (with 0 poiting forward for the robot)
                thetaleft = math.atan2(-rayleft[0], rayleft[2])
                thetaright = math.atan2(-rayright[0], rayright[2])
                if thetaleft < 0:
                    thetaleft += 2. * math.pi
                if thetaright < 0:
                    thetaright += 2. * math.pi

                box_height = np.abs(ymax - ymin)
                animal_labels = range(16, 26)
                animal_heights = [
                    113,  # bird
                    113,  # cat 
                    113,  # dog
                    113,  # horse
                    113,  # sheep
                    113,  # cow
                    113,  # elephant
                    113,  # bear
                    113,  # zebra
                    113  # giraffe
                ]
                if cl == 13:
                    # Detected a stop sign
                    obj_height = 64  #mm
                    est_dist_flag = True
                elif cl in animal_labels:
                    # Detected an animal
                    obj_height = animal_heights[cl - 16]
                    est_dist_flag = True
                else:
                    # Detected something else
                    obj_height = None
                    est_dist_flag = False

                # if cl == 'stop sign':
                dist = self.estimate_distance_from_image(
                    box_height, obj_height, est_dist_flag)
                if nav_flag:
                    pos_obj_W, theta_g = self.estimate_obj_pos_in_world(
                        dist, xcen, ycen, pose_w2b_W)
                    pos_obj_W_wflag = np.vstack(
                        (pos_obj_W.reshape(2, 1), 1.0, theta_g)).flatten()
                else:
                    pos_obj_W = np.array([0, 0])
                    pos_obj_W_wflag = np.vstack((pos_obj_W.reshape(
                        (2, 1)), 0.0, 0.0)).flatten()
                print("Object world pos: " + str(pos_obj_W))

                if not self.object_publishers.has_key(cl):
                    self.object_publishers[cl] = rospy.Publisher(
                        '/detector/' + self.object_labels[cl],
                        DetectedObject,
                        queue_size=10)

                # publishes the detected object and its location
                object_msg = DetectedObject()
                object_msg.id = cl
                object_msg.name = self.object_labels[cl]
                object_msg.confidence = sc
                object_msg.distance = dist
                object_msg.thetaleft = thetaleft
                object_msg.thetaright = thetaright
                object_msg.corners = [ymin, xmin, ymax, xmax]
                object_msg.location_W = pos_obj_W_wflag.tolist()
                self.object_publishers[cl].publish(object_msg)

        # displays the camera image
        cv2.imshow("Camera", img_bgr8)
        cv2.waitKey(1)