Esempio n. 1
0
    def __runOptimization(self, problem, deltaJ, deltaX, maxIt):
        """Run the given optimization problem problem"""

        print("run new optimisation with initial values:")
        self.__printResults()

        # verbose and choldmod solving with schur complement trick
        options = aopt.Optimizer2Options()
        options.verbose = True
        options.nThreads = max(1, multiprocessing.cpu_count() - 1)
        options.doSchurComplement = True
        options.linearSolver = aopt.BlockCholeskyLinearSystemSolver(
        )  #does not have multi-threading support

        # stopping criteria
        options.maxIterations = maxIt
        options.convergenceDeltaJ = deltaJ
        options.convergenceDeltaX = deltaX

        # use the dogleg trustregion policy
        options.trustRegionPolicy = aopt.DogLegTrustRegionPolicy()

        # create the optimizer
        optimizer = aopt.Optimizer2(options)
        optimizer.setProblem(problem)

        # go for it:
        return optimizer.optimize()
Esempio n. 2
0
    def optimize(self, options=None, maxIterations=30, recoverCov=False):

        if options is None:
            options = aopt.Optimizer2Options()
            options.verbose = True
            options.doLevenbergMarquardt = True
            options.levenbergMarquardtLambdaInit = 100.0
            options.nThreads = max(1,multiprocessing.cpu_count()-1)
            options.convergenceDeltaX = 1e-4
            options.convergenceDeltaJ = 1
            options.maxIterations = maxIterations
            options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(options.levenbergMarquardtLambdaInit)

        #run the optimization
        self.optimizer = aopt.Optimizer2(options)
        self.optimizer.setProblem(self.problem)

        optimizationFailed=False
        try: 
            retval = self.optimizer.optimize()
            if retval.linearSolverFailure:
                optimizationFailed = True
        except:
            optimizationFailed = True

        if optimizationFailed:
            sm.logError("Optimization failed!")
            raise RuntimeError("Optimization failed!")
        
        #free some memory
        del self.optimizer
        gc.collect()
        if recoverCov:
            self.recoverCovariance()
Esempio n. 3
0
def optimize(problem, options=None, maxIterations=30):
    if options is None:
        options = aopt.Optimizer2Options()
        options.verbose = True
        options.doLevenbergMarquardt = True
        options.levenbergMarquardtLambdaInit = 10.0
        options.nThreads = max(1, multiprocessing.cpu_count() - 1)
        options.convergenceDeltaX = 1e-5
        options.convergenceJDescentRatioThreshold = 1e-6
        options.maxIterations = maxIterations
        options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(
            options.levenbergMarquardtLambdaInit)
        options.linearSolver = aopt.BlockCholeskyLinearSystemSolver()

    # run the optimization
    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    optimizationFailed = False
    try:
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            optimizationFailed = True
    except:
        optimizationFailed = True

    if optimizationFailed:
        sm.logError("Optimization failed!")
        raise RuntimeError("Optimization failed!")

    # free some memory
    del optimizer
    gc.collect()
Esempio n. 4
0
    def maximization_step(self, t_source, target, estep_res, w=0.0,
                           objective_type='pt2pt'):
        m, ndim = t_source.shape
        n = target.shape[0]
        assert ndim == 3, "ndim must be 3."
        m0, m1, nx = estep_res
        c = w / (1.0 - w) * n / m
        m0[m0==0] = np.finfo(np.float32).eps
        m1m0 = np.divide(m1.T, m0).T
        m0m0 = m0 / (m0 + c)
        drxdx = m0m0
        errs = []
        self.problem.clearAllErrorTerms()
        if objective_type == 'pt2pt':
            for i in xrange(m):
                T_l_l = self.T_b_l_Dv.toExpression().inverse() * \
                        aopt.TransformationExpression(self._sensor_tfs[i]) * \
                        self.T_b_l_Dv.toExpression()
                predicted = T_l_l.toRotationExpression() * t_source[i] + T_l_l.toEuclideanExpression()
                err = ket.EuclideanError(m1m0[i], drxdx[i]*np.eye(3, dtype=np.float64), predicted)
                errs.append(err)
                self.problem.addErrorTerm(err)
        else:
            raise ValueError('Unknown objective_type: %s.' % objective_type)

        # define the optimization
        options = aopt.Optimizer2Options()
        options.verbose = False
        options.linearSolver = aopt.BlockCholeskyLinearSystemSolver()
        options.nThreads = 2
        options.convergenceDeltaX = 1e-4
        options.convergenceJDescentRatioThreshold = 1e-6
        options.maxIterations = 50

        # run the optimization
        optimizer = aopt.Optimizer2(options)
        optimizer.setProblem(self.problem)

        # get the prior
        try:
            optimizer.optimize()
        except:
            sm.logFatal("Failed to obtain orientation prior!")
            sys.exit(-1)

        q = np.array([np.linalg.norm(e.error()) for e in errs]).sum()
        return MstepResult(self.T_b_l_Dv.toExpression().toTransformationMatrix(), q)
Esempio n. 5
0
    def findOrientationPriorCameraToImu(self, imu):
        print
        print "Estimating imu-camera rotation prior"

        # build the problem
        problem = aopt.OptimizationProblem()

        # Add the rotation as design variable
        q_i_c_Dv = aopt.RotationQuaternionDv(self.T_extrinsic.q())
        q_i_c_Dv.setActive(True)
        problem.addDesignVariable(q_i_c_Dv)

        # Add the gyro bias as design variable
        gyroBiasDv = aopt.EuclideanPointDv(np.zeros(3))
        gyroBiasDv.setActive(True)
        problem.addDesignVariable(gyroBiasDv)

        #initialize a pose spline using the camera poses
        poseSpline = self.initPoseSplineFromCamera(timeOffsetPadding=0.0)

        for im in imu.imuData:
            tk = im.stamp.toSec()
            if tk > poseSpline.t_min() and tk < poseSpline.t_max():
                #DV expressions
                R_i_c = q_i_c_Dv.toExpression()
                bias = gyroBiasDv.toExpression()

                #get the vision predicted omega and measured omega (IMU)
                omega_predicted = R_i_c * aopt.EuclideanExpression(
                    np.matrix(
                        poseSpline.angularVelocityBodyFrame(tk)).transpose())
                omega_measured = im.omega

                #error term
                gerr = ket.GyroscopeError(omega_measured, im.omegaInvR,
                                          omega_predicted, bias)
                problem.addErrorTerm(gerr)

        #define the optimization
        options = aopt.Optimizer2Options()
        options.verbose = False
        options.linearSolver = aopt.BlockCholeskyLinearSystemSolver()
        options.nThreads = 2
        options.convergenceDeltaX = 1e-4
        options.convergenceDeltaJ = 1
        options.maxIterations = 50

        #run the optimization
        optimizer = aopt.Optimizer2(options)
        optimizer.setProblem(problem)

        #get the prior
        try:
            optimizer.optimize()
        except:
            sm.logFatal("Failed to obtain orientation prior!")
            sys.exit(-1)

        #overwrite the external rotation prior (keep the external translation prior)
        R_i_c = q_i_c_Dv.toRotationMatrix().transpose()
        self.T_extrinsic = sm.Transformation(
            sm.rt2Transform(R_i_c, self.T_extrinsic.t()))

        #set the gyro bias prior (if we have more than 1 cameras use recursive average)
        b_gyro = bias.toEuclidean()
        imu.GyroBiasPriorCount += 1
        imu.GyroBiasPrior = (
            imu.GyroBiasPriorCount - 1.0
        ) / imu.GyroBiasPriorCount * imu.GyroBiasPrior + 1.0 / imu.GyroBiasPriorCount * b_gyro

        #print result
        print "  Orientation prior camera-imu found as: (T_i_c)"
        print R_i_c
        print "  Gyro bias prior found as: (b_gyro)"
        print b_gyro
Esempio n. 6
0
def solveFullBatch(cameras, baseline_guesses, graph):
    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()

    #add camera dvs
    for cam in cameras:
        cam.setDvActiveStatus(True, True, False)
        problem.addDesignVariable(cam.dv.distortionDesignVariable())
        problem.addDesignVariable(cam.dv.projectionDesignVariable())
        problem.addDesignVariable(cam.dv.shutterDesignVariable())

    baseline_dvs = list()
    for baseline_idx in range(0, len(cameras) - 1):
        baseline_dv = aopt.TransformationDv(baseline_guesses[baseline_idx])

        for i in range(0, baseline_dv.numDesignVariables()):
            problem.addDesignVariable(baseline_dv.getDesignVariable(i))

        baseline_dvs.append(baseline_dv)

    #corner uncertainty
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)

    #get the target
    target = cameras[0].ctarget.detector.target()

    #Add calibration target reprojection error terms for all camera in chain
    target_pose_dvs = list()

    #shuffle the views
    reprojectionErrors = []
    timestamps = graph.obs_db.getAllViewTimestamps()
    for view_id, timestamp in enumerate(timestamps):

        #get all observations for all cams at this time
        obs_tuple = graph.obs_db.getAllObsAtTimestamp(timestamp)

        #create a target pose dv for all target views (= T_cam0_w)
        T0 = graph.getTargetPoseGuess(timestamp, cameras, baseline_guesses)
        target_pose_dv = addPoseDesignVariable(problem, T0)
        target_pose_dvs.append(target_pose_dv)

        for cidx, obs in obs_tuple:
            cam = cameras[cidx]

            #calibration target coords to camera X coords
            T_cam0_calib = target_pose_dv.toExpression().inverse()

            #build pose chain (target->cam0->baselines->camN)
            T_camN_calib = T_cam0_calib
            for idx in range(0, cidx):
                T_camN_calib = baseline_dvs[idx].toExpression() * T_camN_calib

            ## add error terms
            for i in range(0, target.size()):
                p_target = aopt.HomogeneousExpression(
                    sm.toHomogeneous(target.point(i)))
                valid, y = obs.imagePoint(i)
                if valid:
                    rerr = cameras[cidx].model.reprojectionError(
                        y, invR, T_camN_calib * p_target, cameras[cidx].dv)
                    problem.addErrorTerm(rerr)
                    reprojectionErrors.append(rerr)

    sm.logDebug("solveFullBatch: added {0} camera error terms".format(
        len(reprojectionErrors)))

    ############################################
    ## solve
    ############################################
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel(
    ) == sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 250
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([e.evaluateError() for e in reprojectionErrors])
        sm.logDebug(
            " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))

    #run intrinsic calibration
    try:
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("calibrateIntrinsics: Optimization failed!")
        success = not retval.linearSolverFailure

    except:
        sm.logError("calibrateIntrinsics: Optimization failed!")
        success = False

    baselines = list()
    for baseline_dv in baseline_dvs:
        baselines.append(sm.Transformation(baseline_dv.T()))

    return success, baselines
Esempio n. 7
0
def calibrateIntrinsics(cam_geometry,
                        obslist,
                        distortionActive=True,
                        intrinsicsActive=True):
    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        d = cam_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        p = cam_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("calibrateIntrinsics: intrinsics guess: {0}".format(p))
        sm.logDebug("calibrateIntrinsics: distortion guess: {0}".format(d))

    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()

    #add camera dvs
    cam_geometry.setDvActiveStatus(intrinsicsActive, distortionActive, False)
    problem.addDesignVariable(cam_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(cam_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(cam_geometry.dv.shutterDesignVariable())

    #corner uncertainty
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)

    #get the image and target points corresponding to the frame
    target = cam_geometry.ctarget.detector.target()

    #target pose dv for all target views (=T_camL_w)
    reprojectionErrors = []
    sm.logDebug(
        "calibrateIntrinsics: adding camera error terms for {0} calibration targets"
        .format(len(obslist)))
    target_pose_dvs = list()
    for obs in obslist:
        success, T_t_c = cam_geometry.geometry.estimateTransformation(obs)
        target_pose_dv = addPoseDesignVariable(problem, T_t_c)
        target_pose_dvs.append(target_pose_dv)

        T_cam_w = target_pose_dv.toExpression().inverse()

        ## add error terms
        for i in range(0, target.size()):
            p_target = aopt.HomogeneousExpression(
                sm.toHomogeneous(target.point(i)))
            valid, y = obs.imagePoint(i)
            if valid:
                rerr = cam_geometry.model.reprojectionError(
                    y, invR, T_cam_w * p_target, cam_geometry.dv)
                problem.addErrorTerm(rerr)
                reprojectionErrors.append(rerr)

    sm.logDebug("calibrateIntrinsics: added {0} camera error terms".format(
        len(reprojectionErrors)))

    ############################################
    ## solve
    ############################################
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel(
    ) == sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 200
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([e.evaluateError() for e in reprojectionErrors])
        sm.logDebug(
            " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))

    #run intrinsic calibration
    try:
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("calibrateIntrinsics: Optimization failed!")
        success = not retval.linearSolverFailure

    except:
        sm.logError("calibrateIntrinsics: Optimization failed!")
        success = False

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        d = cam_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        p = cam_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug(
            "calibrateIntrinsics: guess for intrinsics cam: {0}".format(p))
        sm.logDebug(
            "calibrateIntrinsics: guess for distortion cam: {0}".format(d))

    return success
Esempio n. 8
0
def stereoCalibrate(camL_geometry,
                    camH_geometry,
                    obslist,
                    distortionActive=False,
                    baseline=None):
    #####################################################
    ## find initial guess as median of  all pnp solutions
    #####################################################
    if baseline is None:
        r = []
        t = []
        for obsL, obsH in obslist:
            #if we have observations for both camss
            if obsL is not None and obsH is not None:
                success, T_L = camL_geometry.geometry.estimateTransformation(
                    obsL)
                success, T_H = camH_geometry.geometry.estimateTransformation(
                    obsH)

                baseline = T_H.inverse() * T_L
                t.append(baseline.t())
                rv = sm.RotationVector()
                r.append(rv.rotationMatrixToParameters(baseline.C()))

        r_median = np.median(np.asmatrix(r), axis=0).flatten().T
        R_median = rv.parametersToRotationMatrix(r_median)
        t_median = np.median(np.asmatrix(t), axis=0).flatten().T

        baseline_HL = sm.Transformation(sm.rt2Transform(R_median, t_median))
    else:
        baseline_HL = baseline

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        dL = camL_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        pL = camL_geometry.geometry.projection().getParameters().flatten()
        dH = camH_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        pH = camH_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("initial guess for stereo calib: {0}".format(
            baseline_HL.T()))
        sm.logDebug("initial guess for intrinsics camL: {0}".format(pL))
        sm.logDebug("initial guess for intrinsics camH: {0}".format(pH))
        sm.logDebug("initial guess for distortion camL: {0}".format(dL))
        sm.logDebug("initial guess for distortion camH: {0}".format(dH))

    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()

    #baseline design variable
    baseline_dv = addPoseDesignVariable(problem, baseline_HL)

    #target pose dv for all target views (=T_camL_w)
    target_pose_dvs = list()
    for obsL, obsH in obslist:
        if obsL is not None:  #use camL if we have an obs for this one
            success, T_t_cL = camL_geometry.geometry.estimateTransformation(
                obsL)
        else:
            success, T_t_cH = camH_geometry.geometry.estimateTransformation(
                obsH)
            T_t_cL = T_t_cH * baseline_HL  #apply baseline for the second camera

        target_pose_dv = addPoseDesignVariable(problem, T_t_cL)
        target_pose_dvs.append(target_pose_dv)

    #add camera dvs
    camL_geometry.setDvActiveStatus(True, distortionActive, False)
    camH_geometry.setDvActiveStatus(True, distortionActive, False)
    problem.addDesignVariable(camL_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(camL_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(camL_geometry.dv.shutterDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.shutterDesignVariable())

    ############################################
    ## add error terms
    ############################################

    #corner uncertainty
    # \todo pass in the detector uncertainty somehow.
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)

    #Add reprojection error terms for both cameras
    reprojectionErrors0 = []
    reprojectionErrors1 = []

    for cidx, cam in enumerate([camL_geometry, camH_geometry]):
        sm.logDebug(
            "stereoCalibration: adding camera error terms for {0} calibration targets"
            .format(len(obslist)))

        #get the image and target points corresponding to the frame
        target = cam.ctarget.detector.target()

        #add error terms for all observations
        for view_id, obstuple in enumerate(obslist):

            #add error terms if we have an observation for this cam
            obs = obstuple[cidx]
            if obs is not None:
                T_cam_w = target_pose_dvs[view_id].toExpression().inverse()

                #add the baseline for the second camera
                if cidx != 0:
                    T_cam_w = baseline_dv.toExpression() * T_cam_w

                for i in range(0, target.size()):
                    p_target = aopt.HomogeneousExpression(
                        sm.toHomogeneous(target.point(i)))
                    valid, y = obs.imagePoint(i)
                    if valid:
                        # Create an error term.
                        rerr = cam.model.reprojectionError(
                            y, invR, T_cam_w * p_target, cam.dv)
                        rerr.idx = i
                        problem.addErrorTerm(rerr)

                        if cidx == 0:
                            reprojectionErrors0.append(rerr)
                        else:
                            reprojectionErrors1.append(rerr)

        sm.logDebug("stereoCalibrate: added {0} camera error terms".format(
            len(reprojectionErrors0) + len(reprojectionErrors1)))

    ############################################
    ## solve
    ############################################
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel(
    ) == sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 200
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([e.evaluateError() for e in reprojectionErrors0])
        sm.logDebug(
            " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))
        e2 = np.array([e.evaluateError() for e in reprojectionErrors1])
        sm.logDebug(
            " Reprojection error squarred (camH):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))

        sm.logDebug("baseline={0}".format(
            baseline_dv.toTransformationMatrix()))

    try:
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("stereoCalibrate: Optimization failed!")
        success = not retval.linearSolverFailure
    except:
        sm.logError("stereoCalibrate: Optimization failed!")
        success = False

    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        sm.logDebug("After optimization:")
        e2 = np.array([e.evaluateError() for e in reprojectionErrors0])
        sm.logDebug(
            " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))
        e2 = np.array([e.evaluateError() for e in reprojectionErrors1])
        sm.logDebug(
            " Reprojection error squarred (camH):  mean {0}, median {1}, std: {2}"
            .format(np.mean(e2), np.median(e2), np.std(e2)))

    #verbose output
    if sm.getLoggingLevel() == sm.LoggingLevel.Debug:
        dL = camL_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        pL = camL_geometry.geometry.projection().getParameters().flatten()
        dH = camH_geometry.geometry.projection().distortion().getParameters(
        ).flatten()
        pH = camH_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("guess for intrinsics camL: {0}".format(pL))
        sm.logDebug("guess for intrinsics camH: {0}".format(pH))
        sm.logDebug("guess for distortion camL: {0}".format(dL))
        sm.logDebug("guess for distortion camH: {0}".format(dH))

    if success:
        baseline_HL = sm.Transformation(baseline_dv.toTransformationMatrix())
        return success, baseline_HL
    else:
        #return the initial guess if we fail
        return success, baseline_HL