Esempio n. 1
0
    def compute_kernel(self):
        _2L = 2 * self.L
        kernel = np.zeros((_2L, _2L, _2L), dtype=self.as_type)
        filters_f = self.src.filters.evaluate_grid(self.L)
        sq_filters_f = np.array(filters_f**2, dtype=self.as_type)

        for i in range(0, self.n, self.batch_size):
            pts_rot = rotated_grids(self.L,
                                    self.src.rots[:, :, i:i + self.batch_size])
            weights = sq_filters_f[:, :,
                                   self.src.filters.indices[i:i +
                                                            self.batch_size]]
            weights *= self.src.amplitudes[i:i + self.batch_size]**2

            if self.L % 2 == 0:
                weights[0, :, :] = 0
                weights[:, 0, :] = 0

            pts_rot = m_reshape(pts_rot, (3, -1))
            weights = m_flatten(weights)

            kernel += 1 / (self.n * self.L**4) * anufft3(
                weights, pts_rot, (_2L, _2L, _2L), real=True)

        # Ensure symmetric kernel
        kernel[0, :, :] = 0
        kernel[:, 0, :] = 0
        kernel[:, :, 0] = 0

        logger.info('Computing non-centered Fourier Transform')
        kernel = mdim_ifftshift(kernel, range(0, 3))
        kernel_f = fft2(kernel, axes=(0, 1, 2))
        kernel_f = np.real(kernel_f)

        return FourierKernel(kernel_f, centered=False)
Esempio n. 2
0
    def compute_kernel(self):
        _2L = 2 * self.L
        kernel = np.zeros((_2L, _2L, _2L), dtype=self.dtype)
        sq_filters_f = self.src.eval_filter_grid(self.L, power=2)

        for i in range(0, self.n, self.batch_size):
            _range = np.arange(i, min(self.n, i + self.batch_size), dtype=int)
            pts_rot = rotated_grids(self.L, self.src.rots[_range, :, :])
            weights = sq_filters_f[:, :, _range]
            weights *= self.src.amplitudes[_range]**2

            if self.L % 2 == 0:
                weights[0, :, :] = 0
                weights[:, 0, :] = 0

            pts_rot = m_reshape(pts_rot, (3, -1))
            weights = m_flatten(weights)

            kernel += (1 / (self.n * self.L**4) *
                       anufft(weights, pts_rot, (_2L, _2L, _2L), real=True))

        # Ensure symmetric kernel
        kernel[0, :, :] = 0
        kernel[:, 0, :] = 0
        kernel[:, :, 0] = 0

        logger.info("Computing non-centered Fourier Transform")
        kernel = mdim_ifftshift(kernel, range(0, 3))
        kernel_f = fft2(kernel, axes=(0, 1, 2))
        kernel_f = np.real(kernel_f)

        return FourierKernel(kernel_f, centered=False)
Esempio n. 3
0
    def circularize(self):
        logger.info("Circularizing kernel")
        kernel = np.real(ifftn(self.kernel))
        kernel = mdim_fftshift(kernel)

        for dim in range(self.ndim):
            logger.info(f"Circularizing dimension {dim}")
            kernel = self.circularize_1d(kernel, dim)

        xx = fftn(mdim_ifftshift(kernel))
        return xx
Esempio n. 4
0
    def compute_kernel(self):
        # TODO: Most of this stuff is duplicated in MeanEstimator - move up the hierarchy?
        n = self.n
        L = self.L
        _2L = 2 * self.L

        kernel = np.zeros((_2L, _2L, _2L, _2L, _2L, _2L), dtype=self.as_type)
        filters_f = self.src.filters.evaluate_grid(L)
        sq_filters_f = np.array(filters_f**2, dtype=self.as_type)

        for i in tqdm(range(0, n, self.batch_size)):
            pts_rot = rotated_grids(L, self.src.rots[:, :,
                                                     i:i + self.batch_size])
            weights = sq_filters_f[:, :,
                                   self.src.filters.indices[i:i +
                                                            self.batch_size]]
            weights *= self.src.amplitudes[i:i + self.batch_size]**2

            if L % 2 == 0:
                weights[0, :, :] = 0
                weights[:, 0, :] = 0

            # TODO: This is where this differs from MeanEstimator
            pts_rot = m_reshape(pts_rot, (3, L**2, -1))
            weights = m_reshape(weights, (L**2, -1))

            batch_n = weights.shape[-1]
            factors = np.zeros((_2L, _2L, _2L, batch_n), dtype=self.as_type)

            # TODO: Numpy has got to have a functional shortcut to avoid looping like this!
            for j in range(batch_n):
                factors[:, :, :, j] = anufft3(weights[:, j],
                                              pts_rot[:, :, j],
                                              (_2L, _2L, _2L),
                                              real=True)

            factors = vol_to_vec(factors)
            kernel += vecmat_to_volmat(factors @ factors.T) / (n * L**8)

        # Ensure symmetric kernel
        kernel[0, :, :, :, :, :] = 0
        kernel[:, 0, :, :, :, :] = 0
        kernel[:, :, 0, :, :, :] = 0
        kernel[:, :, :, 0, :, :] = 0
        kernel[:, :, :, :, 0, :] = 0
        kernel[:, :, :, :, :, 0] = 0

        logger.info('Computing non-centered Fourier Transform')
        kernel = mdim_ifftshift(kernel, range(0, 6))
        kernel_f = fftn(kernel)
        # Kernel is always symmetric in spatial domain and therefore real in Fourier
        kernel_f = np.real(kernel_f)

        return FourierKernel(kernel_f, centered=False)
Esempio n. 5
0
    def compute_kernel(self):
        # TODO: Most of this stuff is duplicated in MeanEstimator - move up the hierarchy?
        n = self.n
        L = self.L
        _2L = 2 * self.L

        kernel = np.zeros((_2L, _2L, _2L, _2L, _2L, _2L), dtype=self.dtype)
        sq_filters_f = self.src.eval_filter_grid(self.L, power=2)

        for i in tqdm(range(0, n, self.batch_size)):
            _range = np.arange(i, min(n, i + self.batch_size))
            pts_rot = rotated_grids(L, self.src.rots[_range, :, :])
            weights = sq_filters_f[:, :, _range]
            weights *= self.src.amplitudes[_range]**2

            if L % 2 == 0:
                weights[0, :, :] = 0
                weights[:, 0, :] = 0

            # TODO: This is where this differs from MeanEstimator
            pts_rot = np.moveaxis(pts_rot, -1, 0).reshape(-1, 3, L**2)
            weights = weights.T.reshape((-1, L**2))

            batch_n = weights.shape[0]
            factors = np.zeros((batch_n, _2L, _2L, _2L), dtype=self.dtype)

            for j in range(batch_n):
                factors[j] = anufft(weights[j],
                                    pts_rot[j], (_2L, _2L, _2L),
                                    real=True)

            factors = Volume(factors).to_vec()
            kernel += vecmat_to_volmat(factors.T @ factors) / (n * L**8)

        # Ensure symmetric kernel
        kernel[0, :, :, :, :, :] = 0
        kernel[:, 0, :, :, :, :] = 0
        kernel[:, :, 0, :, :, :] = 0
        kernel[:, :, :, 0, :, :] = 0
        kernel[:, :, :, :, 0, :] = 0
        kernel[:, :, :, :, :, 0] = 0

        logger.info("Computing non-centered Fourier Transform")
        kernel = mdim_ifftshift(kernel, range(0, 6))
        kernel_f = fftn(kernel)
        # Kernel is always symmetric in spatial domain and therefore real in Fourier
        kernel_f = np.real(kernel_f)

        return FourierKernel(kernel_f, centered=False)