Esempio n. 1
0
        def gaussian_blobs(K, alpha):
            Q = np.zeros(shape=(3, 3, K)).astype(self.dtype)
            D = np.zeros(shape=(3, 3, K)).astype(self.dtype)
            mu = np.zeros(shape=(3, K)).astype(self.dtype)

            for k in range(K):
                V = randn(3, 3).astype(self.dtype) / np.sqrt(3)
                Q[:, :, k] = qr(V)[0]
                D[:, :, k] = alpha**2 / 16 * np.diag(np.sum(abs(V)**2, axis=0))
                mu[:, k] = 0.5 * randn(3) / np.sqrt(3)

            return Q, D, mu
Esempio n. 2
0
def qrand(nrot, seed=0):

    """
    Generate a set of quaternions from random normal distribution.

    Each quaternions is a four-elements column vector. Returns a matrix of
    size 4xn.

    The 3-sphere S^3 in R^4 is a double cover of the rotation group SO(3), SO(3) = RP^3.
    We identify unit norm quaternions a^2+b^2+c^2+d^2=1 with group elements.
    The antipodal points (-a,-b,-c,-d) and (a,b,c,d) are identified as the same group elements,
    so we take a>=0.
    :param nrot: The number of quaternions for rotations.
    :param seed: The random seed.
    :return: An array consists of 4 dimensions quaternions
    """
    q = randn(4, nrot, seed=seed)
    l2_norm = np.sqrt(q[0, :]**2 + q[1, :]**2 + q[2, :]**2 + q[3, :]**2)
    for i in range(4):
        q[i, :] = q[i, :] / l2_norm

    for k in range(nrot):
        if q[0, k] < 0:
            q[:, k] = -q[:, k]

    return q
Esempio n. 3
0
    def _noise_images(self,
                      start=0,
                      num=None,
                      noise_seed=0,
                      noise_filter=None):
        # Generate noisy images in interval [start, start+num-1] (a total of 'num' images)

        end = self.n
        if num is not None:
            end = min(start + num, self.n)
        all_idx = np.arange(start, end)

        if noise_filter is None:
            noise_filter = ScalarFilter(value=1, power=0.5)

        im = np.zeros((self.L, self.L, len(all_idx)), dtype=self.dtype)

        for idx in all_idx:
            random_seed = noise_seed + 191 * (idx + 1)
            im_s = randn(2 * self.L, 2 * self.L, seed=random_seed)
            im_s = im_filter(im_s, noise_filter)
            im_s = im_s[:self.L, :self.L]

            im[:, :, idx - start] = im_s

        return im
Esempio n. 4
0
    def __init__(self,
                 L=8,
                 n=1024,
                 vols=None,
                 states=None,
                 filters=None,
                 offsets=None,
                 amplitudes=None,
                 dtype='single',
                 C=2,
                 angles=None,
                 seed=0,
                 memory=None,
                 noise_filter=None):
        """
        A Cryo-EM simulation
        Other than the base class attributes, it has:

        :param C: The number of distinct volumes
        :param angles: A 3-by-n array of rotation angles
        """
        super().__init__(L=L, n=n, dtype=dtype, memory=memory)

        if offsets is None:
            offsets = L / 16 * randn(2, n, seed=seed).T

        if amplitudes is None:
            min_, max_ = 2. / 3, 3. / 2
            amplitudes = min_ + rand(n, seed=seed) * (max_ - min_)

        states = states or randi(C, n, seed=seed)
        angles = angles or uniform_random_angles(n, seed=seed)

        self.states = states
        if filters is not None:
            self.filters = np.take(filters,
                                   randi(len(filters), n, seed=seed) - 1)
        else:
            self.filters = None
        self.offsets = offsets
        self.amplitudes = amplitudes
        self.angles = angles
        self.C = C
        if vols is None:
            self.vols = self._gaussian_blob_vols(L=self.L, C=self.C, seed=seed)
        else:
            self.vols = vols

        self.seed = seed

        self.noise_adder = None
        if noise_filter is not None and not isinstance(noise_filter,
                                                       ZeroFilter):
            logger.info(f'Appending a NoiseAdder to generation pipeline')
            self.noise_adder = NoiseAdder(seed=self.seed,
                                          noise_filter=noise_filter)
Esempio n. 5
0
    def _forward(self, im, indices):
        im = im.copy()

        for i, idx in enumerate(indices):
            # Note: The following random seed behavior is directly taken from MATLAB Cov3D code.
            random_seed = self.seed + 191 * (idx + 1)
            im_s = randn(2 * im.res, 2 * im.res, seed=random_seed)
            im_s = Image(im_s).filter(self.noise_filter)[:, :, 0]
            im[:, :, i] += im_s[:im.res, :im.res]

        return im
Esempio n. 6
0
    def setUp(self):

        L = 8
        n = 32
        C = 1
        SNR = 1
        pixel_size = 5
        voltage = 200
        defocus_min = 1.5e4
        defocus_max = 2.5e4
        defocus_ct = 7
        Cs = 2.0
        alpha = 0.1

        filters = [
            RadialCTFFilter(pixel_size, voltage, defocus=d, Cs=2.0, alpha=0.1)
            for d in np.linspace(defocus_min, defocus_max, defocus_ct)
        ]

        # Since FFBBasis2D doesn't yet implement dtype, we'll set this to double to match its built in types.
        sim = Simulation(n=n, C=C, filters=filters, dtype='double')

        vols = np.load(os.path.join(DATA_DIR, 'clean70SRibosome_vol.npy'))
        vols = vols[..., np.newaxis]
        vols = downsample(vols, (L * np.ones(3, dtype=int)))
        sim.vols = vols

        self.basis = FFBBasis2D((L, L))
        # use new methods to generate random rotations and clean images
        sim.rots = qrand_rots(n, seed=0)
        self.imgs_clean = vol2img(vols[..., 0], sim.rots)

        self.h_idx = np.array([filters.index(f) for f in sim.filters])
        self.filters = filters
        self.h_ctf_fb = [filt.fb_mat(self.basis) for filt in self.filters]

        self.imgs_ctf_clean = sim.eval_filters(self.imgs_clean)

        sim.cache(self.imgs_ctf_clean)

        power_clean = anorm(self.imgs_ctf_clean)**2 / np.size(
            self.imgs_ctf_clean)
        self.noise_var = power_clean / SNR
        self.imgs_ctf_noise = self.imgs_ctf_clean + np.sqrt(
            self.noise_var) * randn(L, L, n, seed=0)

        self.cov2d = RotCov2D(self.basis)
        self.coeff_clean = self.basis.evaluate_t(self.imgs_clean)
        self.coeff = self.basis.evaluate_t(self.imgs_ctf_noise)
Esempio n. 7
0
    def __init__(self,
                 L=8,
                 n=1024,
                 states=None,
                 filters=None,
                 offsets=None,
                 amplitudes=None,
                 dtype='single',
                 C=2,
                 rots=None):
        """
        A Cryo-EM simulation
        Other than the base class attributes, it has:

        :param C: The no. of distinct volumes
        :param rots: A 3-by-3-by-n array of rotation matrices corresponding to viewing directions
        """

        offsets = offsets or L / 16 * randn(2, n, seed=0)
        if amplitudes is None:
            min_, max_ = 2. / 3, 3. / 2
            amplitudes = min_ + rand(n, seed=0) * (max_ - min_)
        states = states or randi(C, n, seed=0)
        rots = rots or self._uniform_random_rotations(n, seed=0)

        super().__init__(L=L,
                         n=n,
                         states=states,
                         filters=filters,
                         offsets=offsets,
                         amplitudes=amplitudes,
                         rots=rots,
                         dtype=dtype)

        self.C = C
        self.vols = self._gaussian_blob_vols(L=self.L, C=self.C, seed=0)
Esempio n. 8
0
# Evaluate CTF in the 8X8 FB basis
h_ctf_fb = [filt.fb_mat(ffbbasis) for filt in filters]

# Apply the CTF to the clean images.
logger.info('Apply CTF filters to clean images.')
imgs_ctf_clean = Image(sim.eval_filters(imgs_clean))
sim.cache(imgs_ctf_clean)

# imgs_ctf_clean is an Image object. Convert to numpy array for subsequent statements
imgs_ctf_clean = imgs_ctf_clean.asnumpy()

# Apply the noise at the desired singal-noise ratio to the filtered clean images
logger.info('Apply noise filters to clean images.')
power_clean = anorm(imgs_ctf_clean)**2 / np.size(imgs_ctf_clean)
noise_var = power_clean / sn_ratio
imgs_noise = imgs_ctf_clean + np.sqrt(noise_var) * randn(
    img_size, img_size, num_imgs, seed=0)

# Expand the images, both clean and noisy, in the Fourier-Bessel basis. This
# can be done exactly (that is, up to numerical precision) using the
# `basis.expand` function, but for our purposes, an approximation will do.
# Since the basis is close to orthonormal, we may approximate the exact
# expansion by applying the adjoint of the evaluation mapping using
# `basis.evaluate_t`.
logger.info('Get coefficients of clean and noisy images in FFB basis.')
coeff_clean = ffbbasis.evaluate_t(imgs_clean)
coeff_noise = ffbbasis.evaluate_t(imgs_noise)

# Create the Cov2D object and calculate mean and covariance for clean images without CTF.
# Given the clean Fourier-Bessel coefficients, we can estimate the symmetric
# mean and covariance. Note that these are not the same as the sample mean and
# covariance, since these functions use the rotational and reflectional