Esempio n. 1
0
    def evaluate_t(self, v):
        """
        Evaluate coefficient in FB basis from those in standard 2D coordinate basis

        :param v: The coefficient array to be evaluated. The last dimensions
            must equal `self.sz`.
        :return: The evaluation of the coefficient array `v` in the dual basis
            of `basis`. This is an array of vectors whose last dimension equals
             `self.count` and whose first dimensions correspond to
             first dimensions of `v`.
        """

        if v.dtype != self.dtype:
            logger.warning(
                f"{self.__class__.__name__}::evaluate_t"
                f" Inconsistent dtypes v: {v.dtype} self: {self.dtype}"
            )

        if isinstance(v, Image):
            v = v.asnumpy()

        v = v.T  # RCOPT

        x, sz_roll = unroll_dim(v, self.ndim + 1)
        x = m_reshape(
            x, new_shape=tuple([np.prod(self.sz)] + list(x.shape[self.ndim :]))
        )

        r_idx = self.basis_coords["r_idx"]
        ang_idx = self.basis_coords["ang_idx"]
        mask = m_flatten(self.basis_coords["mask"])

        ind = 0
        ind_radial = 0
        ind_ang = 0

        v = np.zeros(shape=tuple([self.count] + list(x.shape[1:])), dtype=v.dtype)
        for ell in range(0, self.ell_max + 1):
            k_max = self.k_max[ell]
            idx_radial = ind_radial + np.arange(0, k_max)
            # include the normalization factor of angular part
            ang_nrms = self.angular_norms[idx_radial]
            radial = self._precomp["radial"][:, idx_radial]
            radial = radial / ang_nrms

            sgns = (1,) if ell == 0 else (1, -1)
            for _ in sgns:
                ang = self._precomp["ang"][:, ind_ang]
                ang_radial = np.expand_dims(ang[ang_idx], axis=1) * radial[r_idx]
                idx = ind + np.arange(0, k_max)
                v[idx] = ang_radial.T @ x[mask]
                ind += len(idx)
                ind_ang += 1

            ind_radial += len(idx_radial)

        v = roll_dim(v, sz_roll)
        return v.T  # RCOPT
Esempio n. 2
0
    def testRollDims(self):
        m = np.arange(1, 1201).reshape((5, 2, 120), order="F")
        m2 = roll_dim(m, (10, 3, 4))

        # m2 will now have shape (5, 2, 10, 3, 4)
        self.assertEqual(m2.shape, (5, 2, 10, 3, 4))
        # The values should still be filled in with the first axis values changing fastest
        self.assertTrue(
            np.allclose(m2[:, 0, 0, 0, 0], np.array([1, 2, 3, 4, 5])))
Esempio n. 3
0
    def evaluate_t(self, v):
        """
        Evaluate coefficient in FB basis from those in standard 3D coordinate basis

        :param v: The coefficient array to be evaluated. The first dimensions
            must equal `self.sz`.
        :return: The evaluation of the coefficient array `v` in the dual
            basis of `basis`. This is an array of vectors whose first dimension
            equals `self.count` and whose remaining dimensions correspond
            to higher dimensions of `v`.
        """

        v = v.T
        x, sz_roll = unroll_dim(v, self.ndim + 1)
        x = m_reshape(x,
                      new_shape=tuple([np.prod(self.sz)] +
                                      list(x.shape[self.ndim:])))

        r_idx = self.basis_coords["r_idx"]
        ang_idx = self.basis_coords["ang_idx"]
        mask = m_flatten(self.basis_coords["mask"])

        ind = 0
        ind_radial = 0
        ind_ang = 0

        v = np.zeros(shape=tuple([self.count] + list(x.shape[1:])),
                     dtype=self.dtype)
        for ell in range(0, self.ell_max + 1):
            k_max = self.k_max[ell]
            idx_radial = ind_radial + np.arange(0, k_max)
            nrms = self._norms[idx_radial]
            radial = self._precomp["radial"][:, idx_radial]
            radial = radial / nrms

            for _ in range(-ell, ell + 1):
                ang = self._precomp["ang"][:, ind_ang]
                ang_radial = np.expand_dims(ang[ang_idx],
                                            axis=1) * radial[r_idx]
                idx = ind + np.arange(0, len(idx_radial))
                v[idx] = np.real(ang_radial.T @ x[mask])
                ind += len(idx)
                ind_ang += 1

            ind_radial += len(idx_radial)

        v = roll_dim(v, sz_roll)
        return v.T
Esempio n. 4
0
    def evaluate(self, v):
        """
        Evaluate coefficients in standard coordinate basis from those in Dirac basis

        :param v: A coefficient vector (or an array of coefficient vectors) to
            be evaluated. The first dimension must equal `self.count`.
        :return: The evaluation of the coefficient vector(s) `v` for this basis.
            This is an array whose first dimensions equal `self.sz` and the remaining
            dimensions correspond to dimensions two and higher of `v`.
        """
        v, sz_roll = unroll_dim(v, 2)
        x = np.zeros(shape=(self._sz_prod, ) + v.shape[1:], dtype=self.dtype)
        x[self._mask, ...] = v
        x = m_reshape(x, self.sz + x.shape[1:])
        x = roll_dim(x, sz_roll)

        return x
Esempio n. 5
0
    def evaluate(self, v):
        """
        Evaluate coefficients in standard 3D coordinate basis from those in FB basis
        :param v: A coefficient vector (or an array of coefficient vectors) to
            be evaluated. The first dimension must equal `self.count`.
        :return: The evaluation of the coefficient vector(s) `v` for this basis.
            This is an array whose first dimensions equal `self.z` and the
            remaining dimensions correspond to dimensions two and higher of `v`.
        """

        v = v.T
        v, sz_roll = unroll_dim(v, 2)

        r_idx = self.basis_coords["r_idx"]
        ang_idx = self.basis_coords["ang_idx"]
        mask = m_flatten(self.basis_coords["mask"])

        ind = 0
        ind_radial = 0
        ind_ang = 0

        x = np.zeros(shape=tuple([np.prod(self.sz)] + list(v.shape[1:])),
                     dtype=self.dtype)
        for ell in range(0, self.ell_max + 1):
            k_max = self.k_max[ell]
            idx_radial = ind_radial + np.arange(0, k_max)
            nrms = self._norms[idx_radial]
            radial = self._precomp["radial"][:, idx_radial]
            radial = radial / nrms

            for _ in range(-ell, ell + 1):
                ang = self._precomp["ang"][:, ind_ang]
                ang_radial = np.expand_dims(ang[ang_idx],
                                            axis=1) * radial[r_idx]
                idx = ind + np.arange(0, len(idx_radial))
                x[mask] += ang_radial @ v[idx]
                ind += len(idx)
                ind_ang += 1

            ind_radial += len(idx_radial)

        x = m_reshape(x, self.sz + x.shape[1:])
        x = roll_dim(x, sz_roll)

        return x.T
Esempio n. 6
0
    def evaluate_t(self, x):
        """
        Evaluate coefficient in Dirac basis from those in standard coordinate basis

        :param x: The coefficient array to be evaluated. The first dimensions
            must equal `self.sz`.
        :return: The evaluation of the coefficient array `v` in the dual basis
            of `basis`. This is an array of vectors whose first dimension equals
             `self.count` and whose remaining dimensions correspond to
             higher dimensions of `v`.
        """
        x, sz_roll = unroll_dim(x, self.ndim + 1)
        x = m_reshape(x, new_shape=(self._sz_prod, ) + x.shape[self.ndim:])
        v = np.zeros(shape=(self.count, ) + x.shape[1:], dtype=self.dtype)
        v = x[self._mask, ...]
        v = roll_dim(v, sz_roll)

        return v
Esempio n. 7
0
    def convolve_volume(self, x):
        """
        Convolve volume with kernel
        :param x: An N-by-N-by-N-by-... array of volumes to be convolved.
        :return: The original volumes convolved by the kernel with the same dimensions as before.
        """
        N = x.shape[0]
        kernel_f = self.kernel[..., np.newaxis]
        N_ker = kernel_f.shape[0]

        x, sz_roll = unroll_dim(x, 4)
        ensure(x.shape[0] == x.shape[1] == x.shape[2] == N,
               "Volumes in x must be cubic")
        ensure(kernel_f.shape[3] == 1, "Convolution kernel must be cubic")
        ensure(
            len(set(kernel_f.shape[:3])) == 1,
            "Convolution kernel must be cubic")

        is_singleton = x.shape[3] == 1

        if is_singleton:
            x = fftn(x[..., 0], (N_ker, N_ker, N_ker))[..., np.newaxis]
        else:
            raise NotImplementedError("not yet")

        x = x * kernel_f

        if is_singleton:
            x[..., 0] = np.real(ifftn(x[..., 0]))
            x = x[:N, :N, :N, :]
        else:
            raise NotImplementedError("not yet")

        x = roll_dim(x, sz_roll)

        return np.real(x)