Esempio n. 1
0
def test_absolute_path():
    current_absolute_path = os.path.abspath(
        "test/test_data/sprat_LHS6328.list")
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(filelist=current_absolute_path)
    img.load_data()
    img.reduce()
Esempio n. 2
0
def test_input_with_one_line_and_reduction():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328_one_line.list")
    )
    img.load_data()
    img.reduce()
Esempio n. 3
0
def test_saturated_data():
    # Science frame
    lhs6328_frame = image_reduction.ImageReduction(
        log_level="DEBUG", log_file_folder=os.path.join(HERE, "test_output")
    )
    lhs6328_frame.add_filelist(
        os.path.join(
            HERE, "test_data", "sprat_LHS6328_fake_saturated_data.list"
        )
    )
    lhs6328_frame.load_data()
    lhs6328_frame.reduce()

    lhs6328_frame.save_masks(
        os.path.join(
            HERE, "test_output", "fake_saturated_reduced_image_mask.fits"
        ),
        overwrite=True,
    )

    assert (lhs6328_frame.bad_mask == lhs6328_frame.saturation_mask).all()

    lhs6328_twodspec = spectral_reduction.TwoDSpec(
        lhs6328_frame,
        spatial_mask=spatial_mask,
        spec_mask=spec_mask,
        cosmicray=True,
        readnoise=5.7,
        log_level="DEBUG",
        log_file_folder=os.path.join(HERE, "test_output"),
    )

    lhs6328_twodspec.ap_trace(nspec=1)

    lhs6328_twodspec.ap_extract(model="lowess", lowess_frac=0.8)
Esempio n. 4
0
def test_input_with_only_one_column():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(
            HERE, "test_data", "sprat_LHS6328_expect_fail.list"
        )
    )
Esempio n. 5
0
def test_input_with_wrong_bias_combine_type():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
    img.set_properties(combinetype_bias="FAIL")
    img.load_data()
    img.reduce()
Esempio n. 6
0
def test_input_with_multiple_frames_to_combine_and_reduction():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(filelist=os.path.join(HERE, "test_data",
                                           "sprat_LHS6328_repeated_data.list"))
    img.set_properties(combinetype_flat="average")
    img.load_data()
    img.reduce()
Esempio n. 7
0
def test_input_with_fits_data_object():
    filelist = np.loadtxt(
        os.path.join(HERE, "test_data", "sprat_LHS6328.list"),
        delimiter=",",
        dtype="object",
    )
    for i, filepath in enumerate(filelist[:, 1]):
        filelist[:, 1][i] = os.path.join(os.path.join(HERE, "test_data"),
                                         filepath.strip())
    img = image_reduction.ImageReduction(log_file_name=None)
    imtype = filelist[:, 0].astype("object")
    impath = filelist[:, 1].astype("object")

    dark_list = impath[imtype == "dark"]
    arc_list = impath[imtype == "arc"]
    light_list = impath[imtype == "light"]

    for i in range(light_list.size):

        light = fits.open(light_list[i])[0]
        img.add_light(light.data, light.header, float(light.header["EXPTIME"]))

    for i in range(arc_list.size):

        arc = fits.open(arc_list[i])[0]
        img.add_arc(arc.data, arc.header)

    for i in range(dark_list.size):

        dark = fits.open(dark_list[i])[0]
        img.add_dark(dark.data, dark.header, float(dark.header["EXPTIME"]))

    img.reduce()
Esempio n. 8
0
def test_space_separated_input_2():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.txt"),
        delimiter=" ",
    )
    img.load_data()
    img.reduce()
Esempio n. 9
0
def test_tsv_input_2():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.tsv"),
        ftype="tsv",
        delimiter="\t",
    )
    img.load_data()
    img.reduce()
Esempio n. 10
0
def test_cosmicray_cleaning():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
    img.set_properties(cosmicray=True,
                       psfmodel="gaussx",
                       combinetype_bias="average")
    img.load_data()
    img.reduce()
Esempio n. 11
0
def test_input_with_data_cube_extra_bracket():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(filelist=os.path.join(
        HERE,
        "test_data",
        "sprat_LHS6328_fake_data_cube_extra_bracket.list",
    ))
    img.load_data()
    img.reduce()
Esempio n. 12
0
def test_input_with_numpy_array_and_reduction():
    filelist = np.loadtxt(
        os.path.join(HERE, "test_data", "sprat_LHS6328.list"),
        delimiter=",",
        dtype="object",
    )
    for i, filepath in enumerate(filelist[:, 1]):
        filelist[:, 1][i] = os.path.join(HERE, "test_data", filepath.strip())
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(filelist=filelist)
    img.load_data()
    img.reduce()
Esempio n. 13
0
def test_input_with_numpy_array_and_clean_bad_pixels_expect_fail():
    filelist = np.loadtxt(
        os.path.join(HERE, "test_data", "sprat_LHS6328.list"),
        delimiter=",",
        dtype="object",
    )
    for i, filepath in enumerate(filelist[:, 1]):
        filelist[:, 1][i] = os.path.join(os.path.join(HERE, "test_data"),
                                         filepath.strip())
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(filelist=filelist)
    img.load_data()
    img.reduce()
    img.create_bad_mask()
    img.heal_bad_pixels(bad_mask=np.ones(100))
Esempio n. 14
0
def test_reduction_and_save(mock_show):
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
    img.load_data()
    img.reduce()
    img.save_fits(os.path.join(HERE, "test_output", "reduced_image"),
                  overwrite=True)
    img.inspect(
        display=False,
        filename=os.path.join(HERE, "test_output", "reduced_image"),
        save_fig=True,
        fig_type="iframe+png+svg+pdf+jpg",
    )
    img.inspect(display=True)
    img.list_files()
Esempio n. 15
0
def test_set_everything_to_bla():
    img = image_reduction.ImageReduction(log_file_name=None)
    img.add_filelist(
        filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.list")
    )
    img.set_properties(
        saxis="bla",
        combinetype_light="bla",
        sigma_clipping_light="bla",
        clip_low_light="bla",
        clip_high_light="bla",
        exptime_light="bla",
        exptime_light_keyword="bla",
        combinetype_arc="bla",
        sigma_clipping_arc="bla",
        clip_low_arc="bla",
        clip_high_arc="bla",
        combinetype_dark="bla",
        sigma_clipping_dark="bla",
        clip_low_dark="bla",
        clip_high_dark="bla",
        exptime_dark="bla",
        exptime_dark_keyword="bla",
        combinetype_bias="bla",
        sigma_clipping_bias="bla",
        clip_low_bias="bla",
        clip_high_bias="bla",
        combinetype_flat="bla",
        sigma_clipping_flat="bla",
        clip_low_flat="bla",
        clip_high_flat="bla",
        exptime_flat="bla",
        exptime_flat_keyword="bla",
        cosmicray="bla",
        gain="bla",
        readnoise="bla",
        fsmode="bla",
        psfmodel="bla",
        heal_pixels="bla",
        cutoff="bla",
        grow="bla",
        iterations="bla",
        diagonal="bla",
    )
    img.load_data()
    img.reduce()
Esempio n. 16
0
def test_logger():
    imred_debug = image_reduction.ImageReduction(
        log_level="DEBUG",
        logger_name="imred_debug",
        log_file_name="imred_debug.log",
        log_file_folder=os.path.join(HERE, "test_output"),
    )
    imred_info = image_reduction.ImageReduction(
        log_level="INFO",
        logger_name="imred_info",
        log_file_name="imred_info.log",
        log_file_folder=os.path.join(HERE, "test_output"),
    )
    imred_warning = image_reduction.ImageReduction(
        log_level="WARNING",
        logger_name="imred_warning",
        log_file_name="imred_warning.log",
        log_file_folder=os.path.join(HERE, "test_output"),
    )
    imred_error = image_reduction.ImageReduction(
        log_level="ERROR",
        logger_name="imred_error",
        log_file_name="imred_error.log",
        log_file_folder=os.path.join(HERE, "test_output"),
    )
    imred_critical = image_reduction.ImageReduction(
        log_level="CRITICAL",
        logger_name="imred_critical",
        log_file_name="imred_critical.log",
        log_file_folder=os.path.join(HERE, "test_output"),
    )

    imred_debug.logger.debug("debug: debug mode")
    imred_debug.logger.info("debug: info mode")
    imred_debug.logger.warning("debug: warning mode")
    imred_debug.logger.error("debug: error mode")
    imred_debug.logger.critical("debug: critical mode")

    imred_info.logger.debug("info: debug mode")
    imred_info.logger.info("info: info mode")
    imred_info.logger.warning("info: warning mode")
    imred_info.logger.error("info: error mode")
    imred_info.logger.critical("info: critical mode")

    imred_warning.logger.debug("warning: debug mode")
    imred_warning.logger.info("warning: info mode")
    imred_warning.logger.warning("warning: warning mode")
    imred_warning.logger.error("warning: error mode")
    imred_warning.logger.critical("warning: critical mode")

    imred_error.logger.debug("error: debug mode")
    imred_error.logger.info("error: info mode")
    imred_error.logger.warning("error: warning mode")
    imred_error.logger.error("error: error mode")
    imred_error.logger.critical("error: critical mode")

    imred_critical.logger.debug("critical: debug mode")
    imred_critical.logger.info("critical: info mode")
    imred_critical.logger.warning("critical: warning mode")
    imred_critical.logger.error("critical: error mode")
    imred_critical.logger.critical("critical: critical mode")

    debug_debug_length = file_len(
        os.path.join(HERE, "test_output", "imred_debug.log"))
    debug_info_length = file_len(
        os.path.join(HERE, "test_output", "imred_info.log"))
    debug_warning_length = file_len(
        os.path.join(HERE, "test_output", "imred_warning.log"))
    debug_error_length = file_len(
        os.path.join(HERE, "test_output", "imred_error.log"))
    debug_critical_length = file_len(
        os.path.join(HERE, "test_output", "imred_critical.log"))

    assert (debug_debug_length == 5
            ), "Expecting 5 lines in the log file, " + "{} is logged.".format(
                debug_debug_length)
    assert (debug_info_length == 4
            ), "Expecting 4 lines in the log file, " + "{} is logged.".format(
                debug_info_length)
    assert (debug_warning_length == 3
            ), "Expecting 3 lines in the log file, " + "{} is logged.".format(
                debug_warning_length)
    assert (debug_error_length == 2
            ), "Expecting 2 lines in the log file, " + "{} is logged.".format(
                debug_error_length)
    assert (debug_critical_length == 1
            ), "Expecting 1 lines in the log file, " + "{} is logged.".format(
                debug_critical_length)
Esempio n. 17
0
def test_str_verbose_at_initialisation():
    img = image_reduction.ImageReduction(verbose="haha", log_file_name=None)
Esempio n. 18
0
    7584.68,
    7642.02,
    7740.31,
    7802.65,
    7887.40,
    7967.34,
    8057.258,
]
element = ["Xe"] * len(atlas)

spatial_mask = np.arange(35, 200)
spec_mask = np.arange(50, 1024)

# Science frame
lhs6328_frame = image_reduction.ImageReduction(log_level="DEBUG",
                                               log_file_folder=os.path.join(
                                                   HERE, "test_output"))
lhs6328_frame.add_filelist(
    os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
lhs6328_frame.load_data()
lhs6328_frame.reduce()

lhs6328_twodspec = spectral_reduction.TwoDSpec(
    lhs6328_frame,
    spatial_mask=spatial_mask,
    spec_mask=spec_mask,
    cosmicray=True,
    sigclip=1.0,
    readnoise=5.7,
    log_level="DEBUG",
    log_file_folder=os.path.join(HERE, "test_output"),
Esempio n. 19
0
import os
from unittest.mock import patch

from astropy import units
from astropy.io import fits
from astropy.nddata import CCDData
import numpy as np
import pytest

from aspired import image_reduction
from aspired import spectral_reduction
from aspired import util

HERE = os.path.dirname(os.path.realpath(__file__))

img = image_reduction.ImageReduction(log_file_name=None)
img.add_filelist(
    filelist=os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
img.load_data()
img.reduce()

img_with_fits = copy.copy(img)
img_with_fits._create_image_fits()

img_in_hdulist = fits.HDUList(img_with_fits.image_fits)

img_in_CCDData = CCDData(
    img.light_reduced,
    header=fits.Header(img.light_header[0]),
    unit=units.count,
)
Esempio n. 20
0
    lhs6328_twodspec.save_fits(
        output="count",
        filename=os.path.join(HERE, "test_output",
                              "user_supplied_trace_for_extraction"),
        overwrite=True,
    )

    lhs6328_twodspec.remove_trace()


spatial_mask = np.arange(30, 200)
spec_mask = np.arange(50, 1024)

# Science frame
lhs6328_frame = image_reduction.ImageReduction(log_level="INFO",
                                               log_file_name=None)
lhs6328_frame.add_filelist(
    os.path.join(HERE, "test_data", "sprat_LHS6328.list"))
lhs6328_frame.load_data()
lhs6328_frame.reduce()

lhs6328_twodspec = spectral_reduction.TwoDSpec(
    lhs6328_frame,
    spatial_mask=spatial_mask,
    spec_mask=spec_mask,
    cosmicray=True,
    readnoise=5.7,
    log_level="DEBUG",
    log_file_name=None,
)
Esempio n. 21
0
def test_full_run(mock_show):
    # Extract two spectra

    # Line list
    atlas = [
        4193.5,
        4385.77,
        4500.98,
        4524.68,
        4582.75,
        4624.28,
        4671.23,
        4697.02,
        4734.15,
        4807.02,
        4921.48,
        5028.28,
        5618.88,
        5823.89,
        5893.29,
        5934.17,
        6182.42,
        6318.06,
        6472.841,
        6595.56,
        6668.92,
        6728.01,
        6827.32,
        6976.18,
        7119.60,
        7257.9,
        7393.8,
        7584.68,
        7642.02,
        7740.31,
        7802.65,
        7887.40,
        7967.34,
        8057.258,
    ]
    element = ["Xe"] * len(atlas)

    spatial_mask = np.arange(35, 200)
    spec_mask = np.arange(50, 1024)

    # Science frame
    lhs6328_frame = image_reduction.ImageReduction(
        log_level="ERROR", log_file_folder=os.path.join(HERE, "test_output"))
    lhs6328_frame.add_filelist("test/test_data/sprat_LHS6328.list")
    lhs6328_frame.load_data()
    lhs6328_frame.reduce()
    lhs6328_frame.save_fits("test/test_output/test_full_run_standard_image",
                            overwrite=True)

    lhs6328_twodspec = spectral_reduction.TwoDSpec(
        lhs6328_frame,
        spatial_mask=spatial_mask,
        spec_mask=spec_mask,
        cosmicray=True,
        psfmodel="gaussxy",
        readnoise=5.7,
        log_level="ERROR",
        log_file_folder=os.path.join(HERE, "test_output"),
    )

    lhs6328_twodspec.ap_trace(nspec=2, display=False)

    # Optimal extraction to get the LSF for force extraction below
    lhs6328_twodspec.ap_extract(apwidth=15,
                                skywidth=10,
                                skydeg=1,
                                optimal=True,
                                display=False)

    # Force extraction
    lhs6328_twodspec.ap_extract(
        apwidth=15,
        skywidth=10,
        skydeg=1,
        optimal=True,
        forced=True,
        variances=lhs6328_twodspec.spectrum_list[1].var,
        display=False,
    )

    # Aperture extraction
    lhs6328_twodspec.ap_extract(
        apwidth=15,
        skywidth=5,
        skydeg=1,
        optimal=False,
        display=False,
        save_fig=True,
        filename=os.path.join(HERE, "test_output", "test_full_run_extract"),
    )
    lhs6328_twodspec.inspect_line_spread_function(spec_id=0,
                                                  display=False,
                                                  return_jsonstring=True)
    lhs6328_twodspec.inspect_line_spread_function(display=False,
                                                  return_jsonstring=True)

    # Optimal extraction
    lhs6328_twodspec.ap_extract(
        apwidth=15,
        skywidth=5,
        skydeg=1,
        optimal=True,
        forced=True,
        variances=1000000.0,
        display=False,
        save_fig=True,
        filename=os.path.join(HERE, "test_output", "test_full_run_extract"),
    )

    lhs6328_twodspec.inspect_line_spread_function(
        save_fig=True,
        display=True,
        open_iframe=False,
        filename=os.path.join(HERE, "test_output", "test_full_run_lsf"),
    )

    lhs6328_twodspec.save_fits(
        filename=os.path.join(HERE, "test_output", "test_full_run_twospec"),
        overwrite=True,
    )

    # Standard frame
    standard_frame = image_reduction.ImageReduction(
        log_level="ERROR", log_file_folder=os.path.join(HERE, "test_output"))
    standard_frame.add_filelist(
        os.path.join(HERE, "test_data", "sprat_Hiltner102.list"))
    standard_frame.load_data()
    standard_frame.reduce()
    standard_frame.save_fits(
        os.path.join(HERE, "test_output", "test_full_run_standard_image"),
        overwrite=True,
    )

    hilt102_twodspec = spectral_reduction.TwoDSpec(
        standard_frame,
        cosmicray=True,
        psfmodel="gaussyx",
        spatial_mask=spatial_mask,
        spec_mask=spec_mask,
        readnoise=5.7,
        log_level="ERROR",
        log_file_folder=os.path.join(HERE, "test_output"),
    )

    hilt102_twodspec.ap_trace(nspec=1, resample_factor=10, display=False)

    hilt102_twodspec.ap_extract(apwidth=15,
                                skysep=3,
                                skywidth=5,
                                skydeg=1,
                                optimal=True,
                                display=False)
    hilt102_twodspec.inspect_line_spread_function(
        display=True,
        save_fig=True,
        fig_type="jpg+png+pdf+svg+iframe",
        filename=os.path.join(HERE, "test_output", "test_full_run_lsf"),
        return_jsonstring=True,
    )

    # Extract the 1D arc by aperture sum of the traces provided
    lhs6328_twodspec.extract_arc_spec(
        display=True,
        save_fig=True,
        fig_type="jpg+png+pdf+svg+iframe",
        filename=os.path.join(HERE, "test_output", "test_full_run_arc_spec"),
        return_jsonstring=True,
    )
    hilt102_twodspec.extract_arc_spec(display=True)
    hilt102_twodspec.create_fits(output="trace+count")

    # Handle 1D Science spectrum
    lhs6328_onedspec = spectral_reduction.OneDSpec(
        log_level="ERROR", log_file_folder=os.path.join(HERE, "test_output"))
    lhs6328_onedspec.from_twodspec(lhs6328_twodspec, stype="science")
    lhs6328_onedspec.from_twodspec(hilt102_twodspec, stype="standard")

    # Create the trace and count as FITS BEFORE flux and wavelength calibration
    # This is an uncommon operation, but it should work.
    lhs6328_onedspec.create_fits(output="trace+count",
                                 stype="science+standard")

    # Save the trace and count as FITS BEFORE flux and wavelength calibration
    # This is an uncommon operation, but it should work.
    lhs6328_onedspec.save_fits(
        output="trace+count",
        filename=os.path.join(HERE, "test_output", "test_full_run"),
        stype="science+standard",
        overwrite=True,
    )

    # Find the peaks of the arc
    lhs6328_onedspec.find_arc_lines(display=True, stype="science+standard")
    lhs6328_onedspec.find_arc_lines(display=False, stype="science+standard")
    lhs6328_onedspec.inspect_arc_lines(spec_id=0,
                                       display=True,
                                       stype="science+standard")
    lhs6328_onedspec.inspect_arc_lines(spec_id=0,
                                       display=False,
                                       stype="science+standard")

    # Configure the wavelength calibrator
    lhs6328_onedspec.initialise_calibrator(stype="science+standard")

    lhs6328_onedspec.set_hough_properties(
        num_slopes=1000,
        xbins=200,
        ybins=200,
        min_wavelength=3500,
        max_wavelength=8500,
        stype="science+standard",
    )
    lhs6328_onedspec.set_ransac_properties(filter_close=True,
                                           stype="science+standard")

    lhs6328_onedspec.add_user_atlas(elements=element,
                                    wavelengths=atlas,
                                    stype="science+standard")
    lhs6328_onedspec.do_hough_transform()

    # Solve for the pixel-to-wavelength solution
    lhs6328_onedspec.fit(max_tries=200,
                         stype="science+standard",
                         display=False)
    lhs6328_onedspec.robust_refit()

    # list the matched pixel-peaks
    lhs6328_onedspec.get_pix_wave_pairs(spec_id=0)
    lhs6328_onedspec.get_pix_wave_pairs()

    # get all the calibrators
    cal = lhs6328_onedspec.get_calibrator()

    # Apply the wavelength calibration and display it
    lhs6328_onedspec.apply_wavelength_calibration(stype="science+standard")

    # Get the standard from the library
    lhs6328_onedspec.load_standard(target="hiltner102")

    lhs6328_onedspec.get_continuum()

    lhs6328_onedspec.get_sensitivity(sens_deg=11,
                                     method="polynomial",
                                     mask_fit_size=1)

    lhs6328_onedspec.get_sensitivity(k=3,
                                     method="interpolate",
                                     mask_fit_size=1)

    lhs6328_onedspec.apply_flux_calibration(stype="science+standard")
    lhs6328_onedspec.inspect_reduced_spectrum()

    lhs6328_onedspec.get_telluric_profile()
    lhs6328_onedspec.inspect_telluric_profile(display=False)
    lhs6328_onedspec.apply_telluric_correction()
    lhs6328_onedspec.inspect_reduced_spectrum()

    # Apply atmospheric extinction correction
    lhs6328_onedspec.set_atmospheric_extinction(location="orm")
    lhs6328_onedspec.apply_atmospheric_extinction_correction()
    lhs6328_onedspec.inspect_reduced_spectrum()

    # Create FITS
    lhs6328_onedspec.create_fits(output="trace+count")

    # Modify FITS header for the trace
    lhs6328_onedspec.modify_trace_header(0, "set", "COMMENT", "Hello World!")

    print(lhs6328_onedspec.science_spectrum_list[0].trace_hdulist[0].
          header["COMMENT"])

    # Create more FITS
    lhs6328_onedspec.create_fits(
        output="trace+count+arc_spec+wavecal",
        stype="science+standard",
        recreate=False,
    )

    # Check the modified headers are not overwritten
    print(lhs6328_onedspec.science_spectrum_list[0].trace_hdulist[0].
          header["COMMENT"])

    # Save as FITS (and create the ones that were not created earlier)
    lhs6328_onedspec.save_fits(
        output="trace+count+arc_spec+wavecal+wavelength+count_resampled+flux+"
        "flux_resampled",
        filename=os.path.join(HERE, "test_output", "test_full_run"),
        stype="science+standard",
        recreate=False,
        overwrite=True,
    )

    # Check the modified headers are still not overwritten
    print(lhs6328_onedspec.science_spectrum_list[0].trace_hdulist[0].
          header["COMMENT"])

    # Create more FITS
    lhs6328_onedspec.create_fits(output="trace",
                                 stype="science+standard",
                                 recreate=True)

    # Now the FITS header should be back to default
    print(lhs6328_onedspec.science_spectrum_list[0].trace_hdulist[0].header)

    # save as CSV
    lhs6328_onedspec.save_csv(
        output="trace+count+arc_spec+wavecal+wavelength+count_resampled+flux+"
        "flux_resampled",
        filename=os.path.join(HERE, "test_output", "test_full_run"),
        stype="science+standard",
        overwrite=True,
    )

    # save figure
    lhs6328_onedspec.inspect_reduced_spectrum(
        filename=os.path.join(HERE, "test_output", "test_full_run"),
        display=False,
        save_fig=True,
        fig_type="iframe+png",
    )

    # Plot the hough search space
    lhs6328_onedspec.plot_search_space(
        filename=os.path.join(HERE, "test_output",
                              "test_full_run_plot_hough_space"),
        display=False,
        save_fig=True,
        fig_type="iframe+png",
    )