Esempio n. 1
0
def cost_rotated_subpart(some_part, goal_part):
    '''    
    Determine whether the part 'some_part' appears in another part 'goal_part'
    as a rotated subpart. If yes, return the number of 'rotate90' needed, if 
    no return 'np.inf'
    
    The definition of appearance is the same as in the function 
    'appear_as_subpart'.
                   
    @param
        some_part: a tuple representation of a tetris part
        goal_part: a tuple representation of another tetris part
    
    @return
        the number of rotation needed to see 'some_part' appear in 'goal_part'
        np.inf  if no rotated version of 'some_part' appear in 'goal_part'
    
    '''
    # Create TetrisPart object of some_part tuple, to access TetrisPart functions.
    make_object_part = TetrisPart(some_part)

    # Rotate above tetris part 90 degrees clockwise, 4 times.
    for rot in list(range(1, 5)):
        make_object_part.rotate90()

        # Get tuple of tetris part
        matrix_part_rotated = make_object_part.get_frozen()

        # Call appear_as_subpart and If rotated some_part appears in goal_part,
        # return current iteration value as it is the number of rotations.
        if appear_as_subpart(matrix_part_rotated, goal_part):
            return rot

    # Return np.inf if no solution found.
    return np.inf
Esempio n. 2
0
    def result(self, state, action):
        """
        Return the state that results from executing the given
        action in the given state. The action must be one of
        self.actions(state).

        The action can be a drop or rotation.        
        """
        currentState = list(state)

        if (action[0] == "rotate"):  #Check if the action is a rotation action
            piece = TetrisPart(action[1])
            piece.rotate90()
            currentState.append(
                piece.get_frozen())  #Add new rotated piece to the state
            currentState.remove(action[1])  #remove old piece
        else:
            newPiece = TetrisPart(action[0], action[1], action[2])
            currentState.append(
                newPiece.get_frozen())  #Add the new piece to the state
            currentState.remove(action[0])
            currentState.remove(action[1])  #Remove old pieces

        currentState = make_state_canonical(currentState)

        return currentState
Esempio n. 3
0
    def actions(self, state):
        """Return the actions that can be executed in the given
        state. The result would typically be a list, but if there are
        many actions, consider yielding them one at a time in an
        iterator, rather than building them all at once.
        
        Rotations are allowed, but no filtering out the actions that 
        lead to doomed states.

        The actions that lead to rotation are defined as a tuple of the form:
        action = (rotated(piece),index(piece),magic_num)
        """
        # First the drop of one piece into other
        valid_moves1 = AssemblyProblem_2.actions(self, state)
        # Rotation of one of the pieces of state
        valid_moves2 = []
        # Check if all elements are equal. If all pieces are the same it does not matter which one we rotate
        are_equal = False
        if state[1:] == state[:-1]:
            are_equal = True
        for i in range(0, len(state)):
            tetris_piece = TetrisPart(state[i])
            tetris_piece.rotate90()
            piece = tetris_piece.get_frozen()
            valid_moves2.append((piece, i, self.magic_num))
            if are_equal:
                break
        valid_moves = valid_moves1 + valid_moves2

        return valid_moves
Esempio n. 4
0
    def result(self, state, action):
        """
        Return the state that results from executing the given
        action in the given state. The action must be one of
        self.actions(state).

        The action can be a drop or rotation.        
        """
        # Here a workbench state is a frozenset of parts

        #raise NotImplementedError

        part_list = list(state)

        pa, pu, offset = action

        if pu == None:
            part_list.remove(pa)

            rotated_part = TetrisPart(pa)
            rotated_part.rotate90()

            part_list.append(rotated_part.get_frozen())

            return make_state_canonical(part_list)
        else:
            part_list.remove(pa)
            part_list.remove(pu)

            new_part = TetrisPart(pa, pu, offset)

            part_list.append(new_part.get_frozen())

            return make_state_canonical(part_list)
Esempio n. 5
0
def cost_rotated_subpart(some_part, goal_part):                         #DONE
    '''    
    Determine whether the part 'some_part' appears in another part 'goal_part'
    as a rotated subpart. If yes, return the number of 'rotate90' needed, if 
    no return 'np.inf'
    
    The definition of appearance is the same as in the function 
    'appear_as_subpart'. -> call this function for all rotations of some_part
                   
    @param
        some_part: a tuple representation of a tetris part
        goal_part: a tuple representation of another tetris part
    
    @return
        the number of rotation needed to see 'some_part' appear in 'goal_part'
            0, 1, 2, 3 or infinity (np.inf)
        np.inf  if no rotated version of 'some_part' appear in 'goal_part'
    
    '''
    
    #USING HIS METHOD
    # Make a tetris part of all parts, rotate some part n times, test 
    # appear_as_subpart for each rotation, if true return n. If all rotations 
    # tested and returned false, return inf because no solution. 
    sp = TetrisPart(some_part)
    gp = TetrisPart(goal_part)
    
    
    for num_rot in range(0,4):
        if appear_as_subpart(sp.get_frozen(), gp.get_frozen()):
            return num_rot
        sp.rotate90()
    
    return np.inf
Esempio n. 6
0
def test3():

    initial_state = load_state('workbenches/wb_09_i.txt')
    c = initial_state[0]
    print(initial_state)
    print(c)
    d = TetrisPart(c)
    d.rotate90()
    print(d.get_frozen())
    display_state((d.get_frozen(), c))
Esempio n. 7
0
def cost_rotated_subpart(some_part, goal_part):
    '''    
    Determine whether the part 'some_part' appears in another part 'goal_part'
    as a rotated subpart. If yes, return the number of 'rotate90' needed, if 
    no return 'np.inf'
    
    The definition of appearance is the same as in the function 
    'appear_as_subpart'.
                   
    @param
        some_part: a tuple representation of a tetris part
        goal_part: a tuple representation of another tetris part
    
    @return
        the number of rotation needed to see 'some_part' appear in 'goal_part'
        np.inf  if no rotated version of 'some_part' appear in 'goal_part'
    
    '''
    '''
    compare subpart to goal_part
    do you need to rotate?
    no? -> sub_part == goal part
    rotate_counter=np.inf
    yes-> rotate-> (assignment_one) -> assignment_one.rotate90()
    rotate_counter=rotate_counter+1
    loop until sub_part == goal_part OR rotate_counter == 4 (360deg)
    '''
#    raise NotImplementedError
    rotate_counter = 0
    
    while rotate_counter < 4:
        ps = np.array(some_part)  #
        pg = np.array(goal_part)
    
        psT = TetrisPart(ps)
        pgT = TetrisPart(pg)
        
        if appear_as_subpart(ps,pg) == False:
            psT.rotate90()
            rotate_counter += 1
        #do rotation
        #return rotate_counter
    
    # if counter exits loop, there is no match; set value to infinity and exit
    rotate_counter=np.inf
    return rotate_counter
Esempio n. 8
0
    def result(self, state, action):
        """
        Return the state that results from executing the given
        action in the given state. The action must be one of
        self.actions(state).

        The action can be a drop or rotation.        
        """

        # Store action[0] - [2] in corresponding part and offset variables (pa = part above, pu = part under).
        pa, pu, offset = action

        # Resulting list of combined state. Currently lists all parts in state.
        state_to_make_canonical = list(state)
        final_state = ""

        # Conditional statement to check if there is a part to drop onto or not.
        if pu is not None:

            # Make new part with pa and pu.
            make_object = TetrisPart(pa, pu, offset)

            # Get tuple of tetris part.
            returned_state = make_object.get_frozen()

            # Remove existing parts from list
            state_to_make_canonical.remove(pa)
            state_to_make_canonical.remove(pu)
        else:

            # Make new part with pa, rotate and get tuple of new part.
            make_object = TetrisPart(pa)
            make_object.rotate90()
            returned_state = make_object.get_frozen()

            # Remove old part above from state list.
            state_to_make_canonical.remove(pa)

        # Append new state to resulting list, make canonical and return.
        state_to_make_canonical.append(returned_state)
        final_state = make_state_canonical(state_to_make_canonical)

        return final_state
Esempio n. 9
0
    def result(self, state, action):                                    #DONE
        """
        Return the state that results from executing the given
        action in the given state. The action must be one of
        self.actions(state).

        The action can be a drop or rotation.        
        """
        # Here a workbench state is a frozenset of parts        
        assert(action in self.actions(state)) #defense 

        part_list = list(state)
        
        if len(action)==2: #THIS IS A ROTATION
            part, rot = action
            assert (rot in range(1,4)) #defense
            
            # ROTATE PART NUM_ROT TIMES 90 DEGREES 
            # REMOVE PART FROM PART LIST 
            # APPEND ROTATED PART TO PART LIST
            new_part = TetrisPart(part)
            for i in range(0, rot):
                new_part.rotate90()
    
            new_part_tuple = new_part.get_frozen() 
            part_list.remove(part)
            part_list.append(new_part_tuple)
            
            
        elif len(action) == 3: # THIS IS A DROP
            # USE THE ACTION GIVEN TO MAKE A NEW PART FROM PU AND PA
            # REMOVE PA AND PU FROM STATE, REPLACE WITH NEW PART
            # COMPUTE AND RETURN NEW STATE
            pa, pu, offset = action
            new_part = TetrisPart(pa,pu,offset)
            new_part_tuple = new_part.get_frozen()
            part_list.remove(pu)
            part_list.remove(pa)
            part_list.append(new_part_tuple)
            
        return make_state_canonical(part_list)
Esempio n. 10
0
def cost_rotated_subpart(some_part, goal_part):
    '''    
    Determine whether the part 'some_part' appears in another part 'goal_part'
    as a rotated subpart. If yes, return the number of 'rotate90' needed, if 
    no return 'np.inf'
    
    The definition of appearance is the same as in the function 
    'appear_as_subpart'.
                   
    @param
        some_part: a tuple representation of a tetris part
        goal_part: a tuple representation of another tetris part
    
    @return
        the number of rotation needed to see 'some_part' appear in 'goal_part'
        np.inf  if no rotated version of 'some_part' appear in 'goal_part'
    
    '''
    # Create a TetrisPart to rotate some_part
    some_part_tetris = TetrisPart(some_part)
    # Check if the array has just a single element.
    if np.array(some_part).size == 1:
        # Check if the element is in goal.
        if some_part[0] in goal_part:
            return 0
        else:
            return np.inf
    # Check the four possible rotations
    possible_rotations = 4
    for rot in range(0, possible_rotations):
        if rot == 0:
            some_part_tetris.get_frozen()
            if appear_as_subpart(some_part_tetris.frozen, goal_part):
                return rot
        else:
            some_part_tetris.rotate90()
            some_part_tetris.get_frozen()
            if appear_as_subpart(some_part_tetris.frozen, goal_part):
                return rot
    return np.inf
Esempio n. 11
0
def cost_rotated_subpart(some_part, goal_part):
    '''    
    Determine whether the part 'some_part' appears in another part 'goal_part'
    as a rotated subpart. If yes, return the number of 'rotate90' needed, if 
    no return 'np.inf'
    
    The definition of appearance is the same as in the function 
    'appear_as_subpart'.
                   
    @param
        some_part: a tuple representation of a tetris part
        goal_part: a tuple representation of another tetris part
    
    @return
        the number of rotation needed to see 'some_part' appear in 'goal_part'
        np.inf  if no rotated version of 'some_part' appear in 'goal_part'
    
    '''
    piece = TetrisPart(some_part)
    for rotation in range(0, 4):
        if (appear_as_subpart(piece.get_frozen(), goal_part)):
            return rotation  # return the first number of rotation needed to appear in a goal part
        piece.rotate90()
    return np.inf  # return np.inf if part can't be found in a goal piece